English

The "white" laser device from startup Superlight Photonics will completely transform imaging

723
2023-10-28 10:34:02
See translation

Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.

This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Multidisciplinary Sciences in the Department of Ultrafast Dynamics, Haider Zia became an expert in the field of "white" lasers. As a postdoctoral fellow at Twente University, he continued to manipulate photons, but this time they were limited to chips. He suddenly realized that he could combine his knowledge in these two fields to manufacture chip broadband lasers.

At first, Zia thought his idea was an interesting scientific advancement. Only during discussions with colleagues and UT group meetings did he realize that his invention in integrated photonics could revolutionize many industrial and medical imaging technologies. Once I realize there is great market potential, I am excited to push it into the industry, "Zia said.

Cees Links shared Zia's enthusiasm. Lynx reached a deal with Apple, which is often considered to have ushered in the Wi Fi era. He founded the fabless Greenpeak Technologies in 2004. The company focuses on wireless technology for IoT and smart home applications and was acquired by American multinational company Qorvo in 2016. Links stayed at Qorvo until the end of last year, and then decided to start coaching startups.

After being introduced to Zia's newly established company Superlight Photonics, Links quickly realized that he wanted to be deeply involved. He joined this startup as CEO in August last year. Zia and Links have recently obtained funding from DeeptechXL and Oost NL and developed a practical product to showcase to potential customers. They are now searching for the perfect market entry point for their on chip "white" lasers.

Superlight lasers are not actually white because they work in infrared light. However, this is a useful analogy as it clearly indicates that they emit a wide spectrum - unlike traditional lasers, which typically emit a single wavelength. Just like white light composed of a series of colors, the emission spectrum of Superlight's so-called supercontinuum laser spans a wide wavelength range of up to one thousand nanometers.

This wide spectrum is very convenient in certain imaging applications, such as searching for microcracks in metals, eye measurements, detecting skin cancer, and ultra precise positioning measurements. It's like transitioning from black and white to color television: it adds a lot of information, enabling more accurate and high-resolution measurements, "Links said.

No wonder many companies have developed their own supercontinuum lasers, either using multiple light sources or scanning a series of wavelengths by using diffraction gratings to decompose a single light source. The disadvantage of this method is that it can lead to cumbersome and power consuming settings. On the other hand, Zia's "super laser" is based on a chip that utilizes nonlinear optical effects to broaden the output spectrum of a monochromatic laser source. This has created a compact and lightweight device that requires thousands of times less power than any other product currently on the market.

Superlight lasers are not actually white because they work in infrared light. However, this is a useful analogy as it clearly indicates that they emit a wide spectrum - unlike traditional lasers, which typically emit a single wavelength. Just like white light composed of a series of colors, the emission spectrum of Superlight's so-called supercontinuum laser spans a wide wavelength range of up to one thousand nanometers.

This wide spectrum is very convenient in certain imaging applications, such as searching for microcracks in metals, eye measurements, detecting skin cancer, and ultra precise positioning measurements. It's like transitioning from black and white to color television: it adds a lot of information, enabling more accurate and high-resolution measurements, "Links said.

No wonder many companies have developed their own supercontinuum lasers, either using multiple light sources or scanning a series of wavelengths by using diffraction gratings to decompose a single light source. The disadvantage of this method is that it can lead to cumbersome and power consuming settings. On the other hand, Zia's "super laser" is based on a chip that utilizes nonlinear optical effects to broaden the output spectrum of a monochromatic laser source. This has created a compact and lightweight device that requires thousands of times less power than any other product currently on the market.

Source: Laser Network

Related Recommendations
  • Safran Group believes that additive manufacturing is playing an increasingly important role in engines

    Safran Group showcased a 3-foot diameter turbine aft casing manufactured using additive manufacturing technology under the RISE technology program at the Paris Air Show in recent years. This component is Safran's largest additive manufacturing component to date, indicating the increasingly widespread application of additive manufacturing in the design and manufacturing of turbofan engines. In ea...

    06-18
    See translation
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    See translation
  • Laser technology helps wafer bonding, creating a cutting-edge laser system production factory

    Recently, Coherent LaserSystems, the global leader in laser and photon solutions, and Fraunhofer IZM-ASSID jointly announced that they have reached a strategic partnership to develop and optimize alternative bonding and debonding technologies for advanced CMOS and heterogeneous integrated applications (including quantum computing), in which laser technology plays a crucial role. It is reported t...

    2024-06-19
    See translation
  • Laser based ultra precision gas measurement technology

    Laser gas analysis can achieve high sensitivity and selectivity in gas detection. The multi-component capability and wide dynamic range of this detection method help analyze gas mixtures with a wide concentration range. Due to the fact that this method does not require sample preparation or pre concentration, it is easy to adopt in the laboratory or industry.Gas analysis is crucial for determining...

    2024-01-03
    See translation
  • Zeiss, a century old optical giant, has established the Optoelectronic Optics Division

    Recently, Carl Zeiss announced on its official website that it plans to launch a new strategic business unit, ZEISS Photonics&Optics, on October 1, 2024, with the aim of providing excellent optoelectronic and optical products and solutions to global customers. It is reported that starting from the 2024/25 fiscal year, Zeiss Group will establish a new business unit focused on optoelectronics...

    2024-05-28
    See translation