English

Researchers use machine learning to optimize high-power laser experiments

1172
2024-05-24 14:21:53
See translation

High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting systems.

To address this challenge, scientists are searching for different ways to leverage the power of automation and artificial intelligence, which have real-time monitoring capabilities and can perform high-intensity operations.

A group of researchers from the Lawrence Livermore National Laboratory (LLNL), the Fraunhofer Laser Technology Institute (ILT), and the Aurora Infrastructure (ELI ERIC) are conducting an experiment at the ELI beamline facility in the Czech Republic to optimize high-power lasers using machine learning (ML).

Researchers trained LLNL's cognitive simulation development ML code on laser target interaction data, allowing researchers to adjust as the experiment progressed. The output is fed back to the ML optimizer, allowing it to fine tune the pulse shape in real time.

The laser experiment lasted for three weeks, each lasting about 12 hours. During this period, the laser fired 500 times at 5-second intervals. After every 120 shots, stop the laser to replace the copper target foil and check the vaporized target.

"Our goal is to demonstrate reliable diagnosis of laser accelerated ions and electrons from solid targets with high intensity and repeatability," said Matthew Hill, chief researcher at LLNL. "With the support of machine learning optimization algorithms' fast feedback to the laser front-end, the total ion yield of the system can be maximized."

Researchers have made significant progress in understanding the complex physics of laser plasma interactions using the most advanced high repetition rate advanced pulse laser system (L3-HAPLS) and innovative ML technology.

So far, researchers have relied on more traditional scientific methods, which require manual intervention and adjustment. With the help of machine learning capabilities, scientists are now able to analyze large datasets more accurately and make real-time adjustments during experiments.

The success of the experiment also highlights the ability of L3-HAPLS, L3-HAPLS is one of the most powerful and fastest high-intensity laser systems in the world. The experiment has proven that L3-HAPLS has excellent performance repeatability, focus quality, and extremely stable alignment.

Hill and his LLNL team spent about a year collaborating with the Fraunhofer ILT and ELI Beamlines teams to prepare for the experiment. The Livermore team utilized several new instruments developed under laboratory led research and development plans, including representative scintillation imaging systems and REPPS magnetic spectrometers.

The lengthy preparation work paid off as the experiment successfully generated reliable data that can serve as the foundation for progress in various fields including fusion energy, materials science, and medical treatment.

GenAI technology has always been at the forefront of scientific innovation and discovery. It is helping researchers break through the boundaries of scientific possibilities. Last week, researchers from MIT and the University of Basel in Switzerland developed a new machine learning framework to reveal new insights into materials science. Last week, artificial intelligence was proven to play an important role in drug discovery.

Source: Laser Net

Related Recommendations
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    See translation
  • Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

    Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improve...

    2023-09-18
    See translation
  • New Source Technology will participate in the 2024 Western Optoelectronics Show in the United States

    Laser and electro-optic product manufacturer and supplier Xinyuan Technology announced today that it plans to participate in the 2024 Western Optoelectronics Show in San Francisco from January 30th to February 1st.As a top event in the photonics industry, the Western Optoelectronics Show in the United States will return in 2024 to host another groundbreaking exhibition. This annual event att...

    2023-11-11
    See translation
  • From Fiction to Reality: Laser Cutting Technology Has Entered the Shipbuilding Industry

    Laser cutting is a type of metal processing. In industry, there are three main cutting methods: mechanical cutting, thermal cutting, and a set of high-precision cutting methods. Laser technology belongs to the third category. The cutting in this method occurs due to the influence of the laser beam on the product. In fact, it is the molten metal produced by rapid pulse point melting and then blowin...

    2023-12-28
    See translation
  • NKT Photonics utilizes fiber lasers to achieve deep space communication links

    On July 7, the European Space Agency (ESA), established Europe’s first deep-space optical communication link with NASA’s Psyche mission using a high-power fiber laser system supplied by NKT Photonics, a subsidiary of Hamamatsu.NKT’s announcement stated, “This achievement, conducted with NASA/JPL’s Deep Space Optical Communications (DSOC) demonstrator, marks a significant leap forward in high-data-...

    07-21
    See translation