English

BluGlass received its first order α GaN DFB laser

1099
2024-01-10 13:55:25
See translation

Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.

This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.

Quantum sensing, navigation, and computing applications are driving a huge demand for compact single frequency laser sources.

Single frequency visible light lasers have unique characteristics required to stimulate quantum transitions, making them suitable for very promising military and commercial applications, including advanced robotics technology, biomedical applications, and atomic clocks for quantum navigation.

In addition to quantum applications, the unique performance characteristics of single wavelength visible light lasers will also drive progress in ranging and underwater communication, gas sensing, long-range threat detection, and high-performance spectroscopic applications.

Gallium nitride DFB lasers are the ideal choice for achieving the strict frequency, beam fidelity, narrow linewidth, high power, and efficiency required for these next-generation technologies.

BluGlass is one of the earliest companies in the world to develop feasible DFB lasers in gallium nitride, as part of its collaboration with the SLEEC Alliance at the University of California, Santa Barbara.

BluGlass CEO Jim Haden said, "Our first customer order for the BluGlass prototype GaN DFB reflects a strong interest in these ultra precision lasers for quantum, defense, and commercial applications.".

New features such as DFB lasers form a key pillar of our growth strategy, and we will continue to utilize our RPCVD technology to enhance BluGlass's DFB lasers, achieving advanced single frequency performance at blue and higher wavelengths.

Although this order reflects an important strategic step taken by BluGlass in the development of laser diodes and indicates the customer's demand for GaN DFB lasers, the revenue from this order is not significant.

Source: Laser Net

Related Recommendations
  • Fraunhofer ILT has developed a process for forming hard material components using USP laser technology

    Tools made of hard materials are very wear-resistant, but the tools used to produce these tools are prone to wear and tear. Laser tools are the solution. Researchers at the Fraunhofer Institute for Laser Technology (ILT) have developed a process chain that can use ultra short pulse (USP) lasers to shape and polish hard material components without the need to replace clamping devices.Drills, millin...

    10-17
    See translation
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    See translation
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    See translation
  • Understanding the "single-mode" and "multi-mode" in cleaning lasers in one article

    In industrial production, cleaning is a crucial step. Traditional cleaning methods, such as mechanical cleaning and chemical cleaning, although can meet production needs to a certain extent, often have problems such as low flexibility and environmental pollution. With the advancement of technology, laser cleaning technology has emerged as a new favorite in the cleaning field due to its high effici...

    05-14
    See translation
  • Research on LiDAR at the University of Electronic Science and Technology of China, published in Nature

    The team from the School of Information and Communication Engineering at the University of Electronic Science and Technology of China has proposed for the first time a laser radar instrument based on the dispersion Fourier transform method, forming a new demodulation mechanism. This instrument breaks through the cross limitations of measurement speed, accuracy, and distance, and has unique advanta...

    2024-06-22
    See translation