English

BluGlass received its first order α GaN DFB laser

1019
2024-01-10 13:55:25
See translation

Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.

This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.

Quantum sensing, navigation, and computing applications are driving a huge demand for compact single frequency laser sources.

Single frequency visible light lasers have unique characteristics required to stimulate quantum transitions, making them suitable for very promising military and commercial applications, including advanced robotics technology, biomedical applications, and atomic clocks for quantum navigation.

In addition to quantum applications, the unique performance characteristics of single wavelength visible light lasers will also drive progress in ranging and underwater communication, gas sensing, long-range threat detection, and high-performance spectroscopic applications.

Gallium nitride DFB lasers are the ideal choice for achieving the strict frequency, beam fidelity, narrow linewidth, high power, and efficiency required for these next-generation technologies.

BluGlass is one of the earliest companies in the world to develop feasible DFB lasers in gallium nitride, as part of its collaboration with the SLEEC Alliance at the University of California, Santa Barbara.

BluGlass CEO Jim Haden said, "Our first customer order for the BluGlass prototype GaN DFB reflects a strong interest in these ultra precision lasers for quantum, defense, and commercial applications.".

New features such as DFB lasers form a key pillar of our growth strategy, and we will continue to utilize our RPCVD technology to enhance BluGlass's DFB lasers, achieving advanced single frequency performance at blue and higher wavelengths.

Although this order reflects an important strategic step taken by BluGlass in the development of laser diodes and indicates the customer's demand for GaN DFB lasers, the revenue from this order is not significant.

Source: Laser Net

Related Recommendations
  • An advanced laser processing laboratory for semiconductor materials and an all solid-state advanced laser research center will be established here

    On October 15th, the Laipu Technology National Headquarters and Integrated Circuit Equipment R&D and Manufacturing Base project successfully held a groundbreaking ceremony in the Chengdu High tech Zone.Project Business CardTotal project investment:1.66 billion yuanProject area:Covering an area of 39 acres, with a construction area of 65000 square metersProject Planning:Construction will begin...

    2023-10-18
    See translation
  • Researchers have proposed a new idea for quasi particle driven ultra bright light sources, which can be used in various applications from non-destructive imaging to chip manufacturing

    An international team of scientists is rethinking the fundamental principles of radiation physics, aiming to create ultra bright light sources. In a new study published in Nature Photonics, researchers from the Higher Institute of Technology in Lisbon, Portugal, the University of Rochester, the University of California, Los Angeles, and the Optical Applications Laboratory in France proposed the us...

    2023-10-24
    See translation
  • SuperLight Launches "First" Portable Broadband Laser

    Supercontinuum spectrum laser developer SuperLight Photonics has launched the so-called "first revolutionary portable broadband laser" - SLP-1000. Its wide spectral output provides a light source for industrial and medical imaging applications as well as spectroscopy.Supercontinuum spectrum lasers, also known as broadband lasers, provide high bandwidth while maintaining high coherence and low nois...

    2023-11-02
    See translation
  • Assisting Gas Mixing to Promote the Development of Fiber Laser Technology

    Just ten years ago, fiber laser cutting machines were considered experts in thin plates. The stores quickly realized that they had to invest in them to compete, at least by reducing their instrument materials. For high-quality sheet metal cutting, CO2 laser is still the way to go. Of course, fiber lasers can cut thicker blanks, but the quality is not very good, and their speed advantage almost dis...

    2024-01-11
    See translation
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    See translation