English

The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

436
2023-11-03 14:24:48
See translation

Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for image acquisition and data reliability.

The core of two new FLUOVIEW systems is Evident's revolutionary SilVIR ™ Detectors, a next-generation technology that enables researchers to obtain quantitative image data. With its silicon photomultiplier tube (SiPM) and patented digital signal processing technology, the SilVIR detector can provide excellent noise reduction and enhanced photon detection efficiency over a wider wavelength range, providing clearer and more accurate imaging results and quantitative image intensity data.

Excellent imaging quality and accuracy. The FV4000 and FV4000MPE microscopes use SilVIR detectors, perfectly combining sensitivity and accuracy, allowing researchers to obtain high-quality images that surpass previous generation laser scanning systems, even from weak fluorescence signals. This progress helps to ensure that images remain clear and have extremely low noise, enabling accurate quantification of fluorescence intensity to obtain more reliable data.

The updated TruSpectral technology of the system is combined with high sensitivity SilVIR detectors, allowing you to see more. Compared with traditional photomultiplier tube (PMT) detector technology, the signal-to-noise ratio and dynamic range have been improved by using SilVIR detector. The system changes the dynamic range of game rules, allowing researchers to capture images that shrink from macroscopic to subcellular structures without compromise.

The innovative near-infrared capability, with its expanded spectral range and improved multiplexing capability, enables the FV4000 system to detect industry-leading wavelengths ranging from 400 nm to 900 nm with a minimum step size of 1 nm.

The optical design of the FV4000 is optimized for near-infrared (NIR) imaging, featuring high transmittance optical elements from 400 nm to 1300 nm, modular laser combiners supporting up to 10 laser lines from 405 nm to 785 nm, and the award-winning X Line ™ Goal.

The advancement driven by artificial intelligence enhances your imaging experience with AI driven tools that reduce noise, simplify image analysis, and improve delayed imaging. TruAI noise reduction and image segmentation technology can optimize image quality and simplify data extraction, saving researchers valuable time and effort.

The improved modularity and flexibility are the same as the previous generation products, and our FLUOVIEW system is designed with flexibility and configuration suitable for your specific application. With FV4000, you can now add multi photon imaging functionality, allowing you to use the same system for two imaging modes.

Experience the revolutionary features of FLUOVIEW FV4000 and FV4000MPE microscopes, providing higher accuracy, sensitivity, and data reliability for your imaging experiments.

Source: Laser Network

Related Recommendations
  • Lockheed Martin announces expansion of 16000 square feet 3D printing center

    Recently, US military industry giant Lockheed Martin announced that it will significantly increase its additive manufacturing capabilities and expand its factory in Texas. The expansion project includes approximately 16000 square feet of dedicated space for 3D printing technology, and the addition of some of the largest large format multi laser printers in the space (it is worth noting that Lockhe...

    2024-12-02
    See translation
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    See translation
  • BWT's 3000W product speed surges by 200%

    In the era of speed and precision, the field of thin and medium plate processing is experiencing a revolutionary transformation. Today, let's explore a remarkably fast tool -- BWT’s Lightning 3000W@34μm fiber laser, and witness its impressive performance.On busy production lines, this product is completing complex cutting tasks at astonishing speeds. Its high-speed, high-efficiency, and high-quali...

    05-12
    See translation
  • Ruifeng constant green laser: With dense and concentrated characteristics, it can accurately cut on PCBs and FPCs

    In the vigorous development of contemporary technology, green laser has become a shining star in the field of electronics. Not only because of its excellent performance, but also because it brings infinite imagination and creative inspiration to creators. The use of green laser for PCB (Printed Circuit Board) and FPC (Flexible Printed Circuit Board) shape cutting has opened up a new artistic journ...

    2023-09-19
    See translation
  • China University of Science and Technology proposes composite cold field 3D printing technology for liquid crystal elastomers

    Recently, Associate Professor Li Mujun from the School of Engineering Sciences and the Institute of Humanoid Robotics at the University of Science and Technology of China, together with researchers such as Professor Zhang Shiwu, has made significant progress in the field of intelligent material 3D printing. The research team proposed composite cold field 3D printing technology and successfully pre...

    02-25
    See translation