English

Microcomb launches a simplified design for powerful lasers based on chips

1092
2024-05-25 14:49:56
See translation

Researchers at the University of Rochester have created new micro comb lasers that go beyond previous limitations and have simple designs suitable for various applications. The research results are published in Nature Communications.

Optical frequency combs are optical measurement instruments that have revolutionized atomic clocks, spectroscopy, metrology, and other fields. However, the difficulty of creating frequency comb generators at the semiconductor level limits their application in everyday technologies such as handheld electronic devices.

What is a micro comb?
Optical frequency combs generate spectra. They are composed of several coherent beams that are evenly spaced and adjusted to different colors or frequencies. The resulting shape is similar to the teeth on a hair comb. Scientists have been developing micro combs, a miniaturized version of this technology that can be installed on small chips.

Although progress has been made in the design of micro comb prototypes, scientists have not yet created functional versions for practical applications. Some of these challenges include low power efficiency, limited controllability, slow mechanical response, and requirements for pre configuration of complex systems.

The simplified method has been developed by a group of scientists led by Professor Lin Qiang from the Institute of Optics and the Department of Electrical and Computer Engineering at the University of Rochester, who has developed a novel strategy to solve these problems in a single device.
The main author of this paper Lin's doctoral student Jingwei Ling claimed that previous methods often relied on injecting a single wavelength of laser into a nonlinear converter, which could then convert a single wavelength into multiple wavelengths to form an optical comb.

The simplicity of the "multi in one" micro comb laser reduces power requirements, lowers costs, and has excellent adjustability and turnkey operation.
The implementation of these micro comb lasers continues to pose challenges, especially in establishing manufacturing processes to generate such small components within the required manufacturing tolerance range. However, the researchers expect their equipment to be used in telecommunications systems and autonomous vehicle for light detection and ranging (LiDAR).

The Defense Advanced Research Projects Agency and the National Science Foundation of the United States provided support for this research.

Source: Laser Net

Related Recommendations
  • Researchers have captured the strange behavior of laser induced gold

    A new study conducted by the US Department of Energy's SLAC National Accelerator Laboratory has revealed the strange behavior of gold when impacted by high-energy laser pulses.When certain materials are subjected to strong laser excitation, they will quickly disintegrate. But gold is exactly the opposite: it becomes more resilient and resilient. This is because the way gold atoms vibrate together ...

    2024-02-17
    See translation
  • Research has found that inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers

    According to research from Busan National University, inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers.The perovskite of interest is CsPbBr3, which must form "nanosheets" within the specific structure invented by the Busan team to obtain sufficient laser gain.It is not that the laser has been achieved, as the research project aims to cha...

    2024-01-04
    See translation
  • Fabrinet Laser Business Revenue Surges

    Recently, Fabrinet released its financial report for the three months ended December 27, 2024, showing that its sales and revenue exceeded expectations. During the reporting period, the company achieved sales of $834 million, a year-on-year increase of 17%. Net income increased by 25% during the same period, reaching $86.6 million.Although the growth in performance is still dominated by the optica...

    02-07
    See translation
  • Accurate measurement of neptunium ionization potential using new laser technology

    Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy te...

    2024-05-11
    See translation
  • Low noise! Switzerland develops a new type of laser

    According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.Small laser system (I...

    2024-07-03
    See translation