English

Narrow band tunable terahertz lasers may change material research and technology

82
2023-11-21 14:07:11
See translation

A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.

By tuning the light source to 10 THz, a lower frequency than before, the team reconstructed a long-lived superconducting state in fullerene based materials while reducing the pulse intensity by 100 times. Although researchers attempted to directly observe this photo induced state at room temperature for 100 picoseconds, they predicted its lifespan to be at least 0.5 nanoseconds.

For many years, we have been interested in the nonlinear response of materials, especially how molecular or phonon modes in solids are driven to large amplitudes, "said Andrea Cavalleri, founding director of the Max Planck Institute for Material Structure and Dynamics, a professor of physics at the University of Hamburg and the University of Niujin. Many new phenomena have occurred in this state, one of which is the amplification of electronic properties such as superconductivity.

The research results of this group will help reveal more details about the potential microscopic mechanisms of photo induced superconductivity. The determination of resonance frequency will enable theorists to understand which excitation is important, as there is no widely accepted theoretical explanation for this effect in K3C60, "said Edward Rowe, a doctoral student who collaborated with Cavalleri.

A light source with a higher repetition rate at a frequency of 10 THz may help maintain metastability for a longer period of time. If we can transmit each new pulse before the sample returns to a non superconducting equilibrium state, it is possible to maintain the superconducting state continuously, "Rowe said.

Amplification of superconductivity
The work of this group is based on the excitation of lattice vibrations, which are then coupled to the electronic degrees of freedom of the system through electron phonon coupling.

Although microphysics is far from clear, the coherent modulation of these modes seems to be able to 'cool' the fluctuations within superconducting electrons, reduce decoherence, and stabilize superconductivity at temperatures that cannot be achieved in non driving or equilibrium systems, "Cavalleri said.

A new type of physical phenomenon is waiting for research and development - it is related to the function of materials controlled by light. The bottleneck at this stage is the availability and complexity of mid infrared and terahertz light sources, most of which are broadband single cycle light sources, "Cavalleri explained. Narrowband tunable lasers and amplifiers that can cover the spectral region of 1 to 20 THz will have a revolutionary impact on material research and technology.

The results of this group were obtained after ten years of research, and their progress was the systematic characterization of material response pump frequency. But increasing efficiency by 100 times is a remarkable and unexpected result, and it is very beneficial, "Cavalleri said.

Along the way, we encountered some challenges. Cavalleri added, "The design of optical parametric amplifiers, their operation under stable conditions, and the preparation of K3C60 samples are all very challenging.

Future high-speed equipment?
Although it is still too early to know exactly what types of applications the team's work will achieve, "if these materials can be designed to the same standards as superconducting platforms used for magnetic manipulation and sensing or electrical transmission, and if terahertz lasers are more widely used outside complex laboratory environments, we can envision applications in high-speed equipment," Cavalieri said.

What is the next step for the team? We are currently developing a platform to study the magnetic and electrical responses of these materials and are interested in exploring the effects of laser driven quantum tunneling, "Cavalleri said.

Source: Laser Network

Related Recommendations
  • Three core processes of laser soldering support the development of PCB electronics industry

    In the field of modern electronic manufacturing, PCB (printed circuit board) serves as the carrier of electronic components. In its manufacturing process, laser soldering technology has become a key link in PCB electronic manufacturing due to its advantages of high precision, high efficiency, and low thermal impact. This article will explore the application of laser soldering technology and its ma...

    2024-04-15
    See translation
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    2024-03-29
    See translation
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    See translation
  • Which automotive parts can use laser soldering technology

    Laser soldering is widely used in the manufacturing of automotive parts. Here are some common automotive parts that can be welded using laser soldering:Automotive electronic control systemEngine Control Unit (ECU): The engine control unit is the "brain" of the car engine, which receives signals from various sensors and controls the operation of the engine based on these signals. Laser soldering ca...

    02-10
    See translation
  • The research team has developed a mechanical luminescent touch screen that can work underwater

    The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.The team is composed of Pro...

    2024-03-08
    See translation