English

Narrow band tunable terahertz lasers may change material research and technology

1004
2023-11-21 14:07:11
See translation

A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.

By tuning the light source to 10 THz, a lower frequency than before, the team reconstructed a long-lived superconducting state in fullerene based materials while reducing the pulse intensity by 100 times. Although researchers attempted to directly observe this photo induced state at room temperature for 100 picoseconds, they predicted its lifespan to be at least 0.5 nanoseconds.

For many years, we have been interested in the nonlinear response of materials, especially how molecular or phonon modes in solids are driven to large amplitudes, "said Andrea Cavalleri, founding director of the Max Planck Institute for Material Structure and Dynamics, a professor of physics at the University of Hamburg and the University of Niujin. Many new phenomena have occurred in this state, one of which is the amplification of electronic properties such as superconductivity.

The research results of this group will help reveal more details about the potential microscopic mechanisms of photo induced superconductivity. The determination of resonance frequency will enable theorists to understand which excitation is important, as there is no widely accepted theoretical explanation for this effect in K3C60, "said Edward Rowe, a doctoral student who collaborated with Cavalleri.

A light source with a higher repetition rate at a frequency of 10 THz may help maintain metastability for a longer period of time. If we can transmit each new pulse before the sample returns to a non superconducting equilibrium state, it is possible to maintain the superconducting state continuously, "Rowe said.

Amplification of superconductivity
The work of this group is based on the excitation of lattice vibrations, which are then coupled to the electronic degrees of freedom of the system through electron phonon coupling.

Although microphysics is far from clear, the coherent modulation of these modes seems to be able to 'cool' the fluctuations within superconducting electrons, reduce decoherence, and stabilize superconductivity at temperatures that cannot be achieved in non driving or equilibrium systems, "Cavalleri said.

A new type of physical phenomenon is waiting for research and development - it is related to the function of materials controlled by light. The bottleneck at this stage is the availability and complexity of mid infrared and terahertz light sources, most of which are broadband single cycle light sources, "Cavalleri explained. Narrowband tunable lasers and amplifiers that can cover the spectral region of 1 to 20 THz will have a revolutionary impact on material research and technology.

The results of this group were obtained after ten years of research, and their progress was the systematic characterization of material response pump frequency. But increasing efficiency by 100 times is a remarkable and unexpected result, and it is very beneficial, "Cavalleri said.

Along the way, we encountered some challenges. Cavalleri added, "The design of optical parametric amplifiers, their operation under stable conditions, and the preparation of K3C60 samples are all very challenging.

Future high-speed equipment?
Although it is still too early to know exactly what types of applications the team's work will achieve, "if these materials can be designed to the same standards as superconducting platforms used for magnetic manipulation and sensing or electrical transmission, and if terahertz lasers are more widely used outside complex laboratory environments, we can envision applications in high-speed equipment," Cavalieri said.

What is the next step for the team? We are currently developing a platform to study the magnetic and electrical responses of these materials and are interested in exploring the effects of laser driven quantum tunneling, "Cavalleri said.

Source: Laser Network

Related Recommendations
  • Innovative laser based rain enhancement project launched by UAEREP and DERC teams

    Recently, the UAE Rainfall Enhancement Scientific Research Program launched a groundbreaking project with Dr. Guillaume Matras and his team from the Directional Energy Research Center of the Institute of Technology Innovation, aiming to address the challenge of global water shortage through advanced technology. This collaboration marks an important milestone in the field of rainfall enhancement sc...

    2024-03-02
    See translation
  • IMEC Introduces World's First 110GHz+ C-Band GeSi EA Modulator

    The nanoelectronics research center IMEC from Belgium announced the successful completion of a significant trial: the fabrication of a 110GHz C-band GeSi electro-absorption modulator on a 300mm silicon photonics platform.Achieving a net data rate of 400Gb/s per lane and optimized for compactness, low latency, and high energy efficiency, imec says its modulator “establishes the foundation for next-...

    10-09
    See translation
  • Sill Optics launches F-Theta lenses for photovoltaic applications

    The energy transformation has brought us global challenges. In this regard, renewable energy sources such as photovoltaic are crucial. The key to improving the efficiency of photovoltaic power generation is to improve the manufacturing process of solar cells. Laser material processing is used to weld individual batteries into modules, dope selective emitters, and remove very thin antireflective an...

    2023-11-22
    See translation
  • Vast's Haven-1 program has become the world's first commercial space station equipped with SpaceX Starlink lasers

    Vast's Haven-1 program will become the world's first commercial space station, equipped with SpaceX's Starlink laser terminal, providing connections to its crew users, internal payload racks, external cameras, and instruments at speeds of gigabits per second and low latency.Max Haot, CEO of Vast, said: "If you need to provide high-speed, low latency, and continuous Internet connection on the orbit...

    2024-04-10
    See translation
  • Export of Pentium Laser Automation Production Line to Japan

    Recently, several large trucks from the Wenzhou factory of Pentium Laser were lined up and ready to go. The high-power and high-speed laser cutting automation production line developed and produced by Pentium Laser has been strictly inspected and accepted by Japanese customers for 15 days and 24 hours of uninterrupted operation. Today, it was loaded and sent to Japan. This laser cutting automati...

    2024-12-06
    See translation