English

BAE conducts laser pipeline scanning tests at the shipyard

76
2023-12-13 13:53:58
See translation

BAE Systems Australia has successfully conducted experiments at the Osborne Naval Shipyard and Henderson Shipyard, using laser scanning technology to create 3D models of pipelines that will be installed on the currently under construction Hunter class frigates.

A one week trial was conducted at the Zero Line Future factory in southern Adelaide and BAE Systems Australia's Henderson Shipyard, demonstrating the technology's ability in real-world manufacturing environments.

According to a statement, BAE's research and technical team has collaborated with the production and dimensional control teams to determine the potential efficiency of the time spent on inspecting the quality of products produced by professional bending equipment.

Each Hunter class frigate requires thousands of uniquely sized pipes, which can be scanned in just five minutes using handheld scanners, some up to three meters long, and 3D models created.

The accuracy of devices and software can reach 100-200 micrometers.
"3D models can be stored to create digital twins for each pipeline used in the building, thus more accurately representing Hunter class frigates."

Sharon Wilson, Business Development and Continuing Naval Shipbuilding Director of BAE Systems Australia, stated that this technology not only helps simplify production processes, but also enables reverse engineering, production, and replacement of pipelines and connecting pipelines.

Wilson said, "We are collaborating with cutting-edge technology to maximize the efficiency of shipyards.".
This is another example of applying commercial equipment to shipyards, and we have conducted tests in the open environment of Line 0.

The insights gained from these experiments not only have significant benefits for our Hunter class frigate program and the ANZAC middle-aged capability assurance program, but we are working with our partners to provide them in naval asset management agreements, and also have significant benefits for Australia's ongoing naval shipbuilding.

Source: Laser Net

Related Recommendations
  • Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

    Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.John Hall's research focuses on understanding and manipulating s...

    2024-03-18
    See translation
  • New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

    Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full inte...

    2024-03-01
    See translation
  • Laser additive manufacturing: monitoring during defect occurrence

    Researchers at the Federal Institute of Technology in Lausanne have resolved the long-standing debate surrounding laser additive manufacturing processes through a groundbreaking defect detection method.The development of laser additive manufacturing is often hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significa...

    2023-12-06
    See translation
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    See translation
  • Topological high-order harmonic spectroscopy in Communications Physics

    It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The rele...

    2024-01-15
    See translation