English

It is said that laser additive manufacturing is good, but what is the advantage?

171
2023-11-08 14:06:49
See translation

When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.

In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the Stone Age when cutting wood into spears and splitting stones into axes, to later turning, milling, drilling, chamfering, and then to electrochemical, chemical, and high-temperature processing, although the technology has improved, the idea is still continuous, which is to peel off or decompose a certain part of the processed material in various ways.

The reason why additive manufacturing is called a groundbreaking technology is because it is more like the process of building blocks, using powdered materials as raw materials to construct the objects we need through layer by layer printing. If traditional processing technology is "subtraction", then additive manufacturing can be said to be "addition". One is' from being to being 'and the other is' from being to being', which is a revolutionary change in industrial production thinking.

The flexibility and variability of lasers and the high degree of freedom in additive manufacturing can be said to be a perfect match. In the Selective Laser Melting Deposition (SLM) process, laser can become a high-power and high-quality heat source for additive manufacturing. Materials such as metals, plastics, ceramics, etc. can be melted and stacked layer by layer to form the desired 3D structure. Another type of photocuring molding technology (Stereo lithography Apparatus, SLA) is the use of ultraviolet or laser beams to irradiate and solidify liquid photosensitive resins. From point to line, from line to surface, form the required three-dimensional structure.

Image source: pixabay

Laser additive manufacturing parts have a fine structure and excellent performance, and are commonly used in industries such as aerospace, automobiles, ships, medical and health that require high precision and performance of products. This is because laser additive manufacturing has the following advantages compared to traditional processing modes:

01 Precision and meticulous effect
Due to the fact that additive manufacturing is built by stacking layers, the required geometric shapes can be designed in advance in the software. During processing, the idea of "subtracting" may not be effective for the detailed structure inside the workpiece or cavity (although there is currently laser engraving technology, it is usually only applicable to transparent materials and has limitations). However, for additive manufacturing, even the most delicate structure can start from micro particles and achieve processing effects.

02 is both personalized and versatile
Additive manufacturing technology itself has extremely high flexibility, allowing customized products to be made according to needs to meet special needs. For example, in medical scenarios, dental patients need to customize a denture, and in cases where universal products cannot perfectly fit, relevant products can be customized. For large-scale equipment, Northwestern Polytechnical University also uses laser additive manufacturing technology to produce TC4 alloy wing ribs with a length of over 3 meters for COMAC C919. With the assistance of software, additive manufacturing data can achieve perfect reproduction of the geometric shape, size, and structure of objects under controlled processing conditions.

03 High material utilization rate
Additive processing is truly a "lossless processing". In the traditional sense of processing, the process of "subtracting" means that cutting, turning, and carving will inevitably generate a certain amount of waste. Additive manufacturing technology directly processes materials as needed, theoretically enabling the preparation of as many materials as needed, reducing the generation of waste. Although the current cost of additive processing cannot be ignored, "non-destructive processing" will be the future development trend.

Image source: pixabay

The top three industries with the highest proportion of additive manufacturing usage in 2022 are aerospace, medical, and automotive industries. It can be seen that in terms of cost, the current additive manufacturing still has some limitations and is not suitable for promotion in industries with low profit margins. Rather than being a new processing method, additive processing provides a valuable "way of thinking" for the manufacturing industry. The perfect integration of laser technology and additive processing will not only be limited to current processing processes such as SLM and SLA, but also have the potential to explore more process models on the path of "addition".

Source: OFweek

Related Recommendations
  • Significant progress has been made in the research on the detection of microwave electric fields in the Rydberg area of Shanghai Institute of Optics and Technology

    Recently, the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, and the East China Research Team of the Key Laboratory of Quantum Optics, Chinese Academy of Sciences, together with the research team of Professor Chen Liqing of East China Normal University, demonstrated a Rydberg microwave sensor with high sens...

    2024-05-08
    See translation
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    See translation
  • AMCM 8 laser M 8K metal 3D printing equipment is about to be launched, equipped with 8 lasers

    In October 2023, Germany's AMCM (EOS, a global technology leader in industrial grade additive manufacturing) announced the upcoming launch of the M 8K metal 3D printing equipment. The device will be equipped with 8 lasers, with a construction volume of 800 x 800 x 1200 millimeters, nearly four times the size of AMCM's previously launched M 4K metal 3D printing device on the market.ArianeGroup's ho...

    2023-10-19
    See translation
  • Advanced optical giant Schott announces completion of Malaysia factory

    Recently, German optical giant SCHOTT is pleased to announce that its advanced production plant located in Gulim, Kedah, Malaysia has been successfully completed. This milestone event was celebrated with the joint witness of employees, clients, and representatives from the Malaysian Investment Development Authority (MIDA).The completion of the new factory marks a significant increase in Schott's...

    2024-10-16
    See translation
  • High precision laser linkage platform to help precision processing

    With the trend of industrial intelligence and precision processing, the demand for laser precision processing in precision 3C industry, machinery and equipment, new energy vehicles and other industries has developed rapidly, making the application of laser processing technology in the industrial field more comprehensive promotion.Due to the inherent nonlinear characteristics between optics and sca...

    2023-09-11
    See translation