English

It is said that laser additive manufacturing is good, but what is the advantage?

1048
2023-11-08 14:06:49
See translation

When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.

In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the Stone Age when cutting wood into spears and splitting stones into axes, to later turning, milling, drilling, chamfering, and then to electrochemical, chemical, and high-temperature processing, although the technology has improved, the idea is still continuous, which is to peel off or decompose a certain part of the processed material in various ways.

The reason why additive manufacturing is called a groundbreaking technology is because it is more like the process of building blocks, using powdered materials as raw materials to construct the objects we need through layer by layer printing. If traditional processing technology is "subtraction", then additive manufacturing can be said to be "addition". One is' from being to being 'and the other is' from being to being', which is a revolutionary change in industrial production thinking.

The flexibility and variability of lasers and the high degree of freedom in additive manufacturing can be said to be a perfect match. In the Selective Laser Melting Deposition (SLM) process, laser can become a high-power and high-quality heat source for additive manufacturing. Materials such as metals, plastics, ceramics, etc. can be melted and stacked layer by layer to form the desired 3D structure. Another type of photocuring molding technology (Stereo lithography Apparatus, SLA) is the use of ultraviolet or laser beams to irradiate and solidify liquid photosensitive resins. From point to line, from line to surface, form the required three-dimensional structure.

Image source: pixabay

Laser additive manufacturing parts have a fine structure and excellent performance, and are commonly used in industries such as aerospace, automobiles, ships, medical and health that require high precision and performance of products. This is because laser additive manufacturing has the following advantages compared to traditional processing modes:

01 Precision and meticulous effect
Due to the fact that additive manufacturing is built by stacking layers, the required geometric shapes can be designed in advance in the software. During processing, the idea of "subtracting" may not be effective for the detailed structure inside the workpiece or cavity (although there is currently laser engraving technology, it is usually only applicable to transparent materials and has limitations). However, for additive manufacturing, even the most delicate structure can start from micro particles and achieve processing effects.

02 is both personalized and versatile
Additive manufacturing technology itself has extremely high flexibility, allowing customized products to be made according to needs to meet special needs. For example, in medical scenarios, dental patients need to customize a denture, and in cases where universal products cannot perfectly fit, relevant products can be customized. For large-scale equipment, Northwestern Polytechnical University also uses laser additive manufacturing technology to produce TC4 alloy wing ribs with a length of over 3 meters for COMAC C919. With the assistance of software, additive manufacturing data can achieve perfect reproduction of the geometric shape, size, and structure of objects under controlled processing conditions.

03 High material utilization rate
Additive processing is truly a "lossless processing". In the traditional sense of processing, the process of "subtracting" means that cutting, turning, and carving will inevitably generate a certain amount of waste. Additive manufacturing technology directly processes materials as needed, theoretically enabling the preparation of as many materials as needed, reducing the generation of waste. Although the current cost of additive processing cannot be ignored, "non-destructive processing" will be the future development trend.

Image source: pixabay

The top three industries with the highest proportion of additive manufacturing usage in 2022 are aerospace, medical, and automotive industries. It can be seen that in terms of cost, the current additive manufacturing still has some limitations and is not suitable for promotion in industries with low profit margins. Rather than being a new processing method, additive processing provides a valuable "way of thinking" for the manufacturing industry. The perfect integration of laser technology and additive processing will not only be limited to current processing processes such as SLM and SLA, but also have the potential to explore more process models on the path of "addition".

Source: OFweek

Related Recommendations
  • Shanghai Institute of Optics and Mechanics has made progress in studying the structure and properties of aluminum phosphate glass

    Recently, Hu Lili, a research team of the High Power Laser Unit Technology Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics, used a method combining experiment, molecular dynamics simulation and quantitative structure property relationship analysis (QSPR) to study aluminum phosphate glass, and the related research results were published in the Journal o...

    2023-09-15
    See translation
  • Magdalena Ridge expands the capacity of optical interferometers

    The Magdalena Ridge Observatory has purchased a second-generation off-axis beam compressor from Optical Surface, which will expand the functionality of the facility's optical interferometer.Interferometer is a research tool that combines two or more light sources to create interference patterns that can be measured and analyzed. In astronomy, interferometers combine the light collected by multiple...

    2024-01-05
    See translation
  • Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

    Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear io...

    2024-06-21
    See translation
  • Sivers Photonics has received a $1 million order for advanced optical sensing products in fields such as LiDAR and industrial applications

    Sivers Semiconductors AB announced that its subsidiary Sivers Photonics has received a new order worth $1 million for advanced optical sensing products from three customers in the fields of LiDAR, Medical, and Industrial.In the first half of the fourth quarter of 2023, new orders were received from several US clients, which will lead to the manufacturing of advanced lasers and optical amplifiers f...

    2023-11-30
    See translation
  • Old brand laser manufacturers win major orders in the nuclear industry

    Recently, Laser Photonics Corporation (LPC) claims to have successfully secured an order from ES Fox Limited to provide them with the CleanTech 500-CTHD laser cleaning system.ES Fox Limited, founded in 1934, is recognized as a leader in the industrial manufacturing and construction industry in Canada. Its nuclear service department has invested millions of hours to support the nuclear power indust...

    2024-05-28
    See translation