English

Siemens will provide Rolls Royce with aerospace additive manufacturing components

1339
2024-12-13 11:42:09
See translation

Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.

Rolls Royce and 3D Printing Technology
Rolls Royce has a long history of using additive manufacturing technology.
In 2013, the company had planned to use 3D printing technology to manufacture parts for its jet engines, in order to accelerate production speed and manufacture more lightweight components.

In 2015, the company collaborated with the UK Additive Manufacturing Center to produce the largest civil aviation engine component at the time using 3D printing technology; In the same year, the company used 3D printing technology to manufacture aviation parts, which were already used in the latest Trent XWB-97 engine at the time and made their first test flight on the Airbus A380.

In 2019, the company announced SLM Solutions' SLM ® The 5004 laser equipment is designated for additive manufacturing development by the company.

The history of cooperation between Rolls Royce and Siemens
The new agreement between Siemens and Rolls Royce aims to expand the mass production scale of additive manufacturing, enabling the development of cutting-edge, lightweight, and high-performance components for commercial flight. This collaboration is an important milestone for Siemens' additive manufacturing business, as it further expands the application of the company's additive manufacturing technology in the aerospace industry.

It is worth mentioning that this cooperation is not the first major transaction between Siemens and Rolls Royce. As early as 2014, both parties had already engaged in significant transactions.

In 2014, Siemens Energy acquired Rolls Royce's natural gas turbine and compressor business for £ 785 million. Afterwards, both parties also signed a long-term contract allowing Siemens to continue using Rolls Royce technology to develop more efficient gas turbines. This 25 year technology licensing agreement will give Rolls Royce an additional £ 200 million.

Subsequently, in the transaction between the two parties in June 2019, the acquiring entity was changed to Rolls Royce. In June 2019, Rolls Royce announced an agreement with Siemens to acquire its electric and hybrid electric aviation propulsion business, eAircraft, to accelerate its electrification strategy.

The demand for 3D printing in the aerospace industry is growing rapidly
3D printing technology in the aerospace industry is renowned for its efficiency and ability to produce innovative prototypes, and has been one of the largest demand markets for 3D printing technology due to its alignment with the Green Aviation initiative aimed at reducing the aviation environmental footprint.

According to the research report on the aerospace additive manufacturing market by Research and Markets, the global market size for 3D printing in the aerospace industry is expected to reach approximately $3.26 billion in 2024, with a compound annual growth rate (CAGR) of 18.8% from 2025 to 2033, and a market size of $15.35 billion by 2033.

Write at the end
The cooperation between Siemens and Rolls Royce once again confirms the development prospects of 3D printing technology in the aerospace industry. Whether it is the high-performance requirements for structural components in the lightweight development trend of civil aviation aircraft, or the high-temperature alloy processing difficulties faced in the field of aviation engines, they can all be solved through 3D printing technology. I believe that with the diversification of 3D printing materials and the development of additive manufacturing equipment, additive manufacturing technology will achieve breakthrough applications in a wider range of aviation fields.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Researchers have successfully developed the world's first superconducting broadband photon detector

    Researchers at the National Institute of Information and Communication Technology in the United States have invented a new structure of a superconducting strip photon detector that can achieve efficient photon detection even in wide strips, and have successfully developed the world's first superconducting wide strip photon detector.The band width of the detector is more than 200 times that of trad...

    2023-11-02
    See translation
  • Polarization polariton topology pointing towards a new type of laser

    Semi light, partially matter quasi particles, known as excitons polaritons, can easily bypass obstacles and condense into a single coherent state - both of which are characteristics of topological insulators. Researchers from the United States and China have developed a new technology to manufacture microcavities from chloride based halide perovskites. They expect this work to lead to a new type o...

    2024-05-30
    See translation
  • GZTECH selected as a reserve "golden seed" enterprise for listing in Hubei Province

    Recently, relevant departments officially released the list of reserve "golden seed" enterprises for listing in Hubei Province for 2024-2025. Following being selected as reserve "golden seed" enterprises for listing in Donghu High tech Zone and Wuhan City in 2024, Wuhan GZTECH Co., Ltd. (hereinafter referred to as "GZTECH") once again stood out from many candidate enterprises with its outstanding ...

    05-19
    See translation
  • Progress makes laser based imaging simpler and more three-dimensional

    a. b. Schematic diagram of PACTER system calibration and imaging program. BT, beam trap; DAQ, data acquisition unit; HWP, half wave plate; PBS, polarization beam splitter; ER, traverse the relay. The difference between the two modes is highlighted by a black dashed box. c. Schematic diagram of a single component ultrasonic transducer manufactured on ER. d. The ultrasound transducer detected 1D P...

    2023-12-05
    See translation
  • Shenzhen Guangfeng Technology may cooperate with well-known German enterprises

    Recently, Shenzhen Guangfeng Technology Co., Ltd. once again disclosed a development fixed-point notice. Unlike other fixed-point notices received this year, this fixed-point notice points to the optical components of the vehicle's dynamic color pixel lights. According to company disclosure, Guangfeng Technology recently received a development notice from a leading international brand car compan...

    2024-11-18
    See translation