English

Researchers have developed a QCL DFB continuous laser for gas detection

1134
2023-08-16 14:22:27
See translation

Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.

In 2004, the first commercial laser was introduced.

Principle: In a single mode laser, the grating is etched into the active region to force the laser to operate at a very specific wavelength determined by the periodicity of the grating. Therefore, the laser emits in a unique spectral mode, which can be slightly adjusted by changing the temperature of the active region.

Gas detection

Continuous single mode lasers have a narrow linewidth, making them an ideal choice for gas detection. They can be adjusted within a maximum range of 10 cm-1; There are multiple modulation schemes available for different purposes. CW-DFB lasers (for continuous wave and distributed feedback) are mainly used in spectroscopy.

Available wavelengths between~625cm-1 and 2500cm-1 (4-16 μ m) Between, the power is 5-100mW. These lasers operate at room temperature. They are provided in the form of chips, base chips, or boxes, with functions such as temperature control, collimation, and fiber coupling.

Other applications: dual frequency comb high-resolution spectroscopy

A quantum cascade laser frequency comb is a device that emits light over a wide spectrum composed of equidistant peaks in the frequency space. Due to the fixed distance between these peaks, which is usually given by the repetition rate of ultrashort pulse sequences, they can be used as frequency domain benchmarks for frequency comb spectra.

In the mid infrared region, quantum cascade lasers that have been specifically studied for optical dispersion have been proven to emit wide and powerful optical frequency combs. Like ultra short pulse lasers, the mode spacing of QCL combs is given by the cavity length. However, in the case of QCL, the periodic modulation in the time domain is FM, not AM, so the output power is constant.

Unlike other comb like technologies, QCL based combs integrate pump lasers and microcavities into their waveguides. This makes it a very compact source. Based on QCL technology, these comb shaped devices can be manufactured across MWIR and LWIR.

The double comb spectrum depends on two local oscillators (OFCs), with slightly different peak spacing. The heterodyne beat frequency of two such combs consists of equally spaced peaks, representing the spectrum of laser in the RF domain.

QCL based dual comb spectroscopy provides the possibility of collecting high-resolution spectra in a wide spectral range of tens of cm-1 and in extremely short acquisition time (i.e. near real-time) at the µ s level. This technology combines the advantages of DFB QCL (i.e. narrow linewidth and mode hopping free tuning) with the large wavelength coverage of external cavity QCL.

Source: Laser Network


Related Recommendations
  • Telescope Discovers Record breaking Galaxy Space Laser

    A powerful telescope in South Africa has detected a space laser 5 billion light-years away from Earth, known as the "megamaser". Scientists named it Nkalakatha, which means "big boss" in Zulu language.Nkalakatha is the farthest hydroxyl giant detected so far, discovered by the MeerKAT telescope on the first night of the survey, which is expected to include 3000 hours of observation. The team of sc...

    2024-03-09
    See translation
  • Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

    Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.Ultra fast laser proc...

    2024-08-06
    See translation
  • Commitment to achieving 100 times the speed of on-chip lasers

    Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.By operating these lasers...

    2023-11-13
    See translation
  • Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

    Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navig...

    2024-03-02
    See translation
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    See translation