English

Researchers have developed a QCL DFB continuous laser for gas detection

398
2023-08-16 14:22:27
See translation

Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.

In 2004, the first commercial laser was introduced.

Principle: In a single mode laser, the grating is etched into the active region to force the laser to operate at a very specific wavelength determined by the periodicity of the grating. Therefore, the laser emits in a unique spectral mode, which can be slightly adjusted by changing the temperature of the active region.

Gas detection

Continuous single mode lasers have a narrow linewidth, making them an ideal choice for gas detection. They can be adjusted within a maximum range of 10 cm-1; There are multiple modulation schemes available for different purposes. CW-DFB lasers (for continuous wave and distributed feedback) are mainly used in spectroscopy.

Available wavelengths between~625cm-1 and 2500cm-1 (4-16 μ m) Between, the power is 5-100mW. These lasers operate at room temperature. They are provided in the form of chips, base chips, or boxes, with functions such as temperature control, collimation, and fiber coupling.

Other applications: dual frequency comb high-resolution spectroscopy

A quantum cascade laser frequency comb is a device that emits light over a wide spectrum composed of equidistant peaks in the frequency space. Due to the fixed distance between these peaks, which is usually given by the repetition rate of ultrashort pulse sequences, they can be used as frequency domain benchmarks for frequency comb spectra.

In the mid infrared region, quantum cascade lasers that have been specifically studied for optical dispersion have been proven to emit wide and powerful optical frequency combs. Like ultra short pulse lasers, the mode spacing of QCL combs is given by the cavity length. However, in the case of QCL, the periodic modulation in the time domain is FM, not AM, so the output power is constant.

Unlike other comb like technologies, QCL based combs integrate pump lasers and microcavities into their waveguides. This makes it a very compact source. Based on QCL technology, these comb shaped devices can be manufactured across MWIR and LWIR.

The double comb spectrum depends on two local oscillators (OFCs), with slightly different peak spacing. The heterodyne beat frequency of two such combs consists of equally spaced peaks, representing the spectrum of laser in the RF domain.

QCL based dual comb spectroscopy provides the possibility of collecting high-resolution spectra in a wide spectral range of tens of cm-1 and in extremely short acquisition time (i.e. near real-time) at the µ s level. This technology combines the advantages of DFB QCL (i.e. narrow linewidth and mode hopping free tuning) with the large wavelength coverage of external cavity QCL.

Source: Laser Network


Related Recommendations
  • Romania Center launches the world's most powerful laser

    Are you ready? The signal is out! "In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobe...

    2024-04-01
    See translation
  • German research institute develops a new nanosecond laser process

    Recently, the Fraunhofer Institute (HHI) has developed a technology for processing aluminum alloy materials using reactive gas assisted nanosecond lasers, which can be used to produce electronic box samples for spacecraft manufacturing. This development project is part of the NanoBLAST project, in close collaboration with thermal engineering company Azimut Space GmbH, aimed at manufacturing surfac...

    2024-09-10
    See translation
  • New research on achieving femtosecond laser machining of multi joint micromachines

    The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformat...

    2023-09-15
    See translation
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    See translation
  • LM GROUP USA expands its North American office

    Recently, BLM GROUP USA, a leading manufacturer of laser tube and sheet metal processing equipment, announced that its North American headquarters in Novi, Michigan has officially started construction, with plans to add 65000 square feet of modern facilities. It is expected to be completed and put into use in the third quarter of 2025.The specific investment amount for this expansion has not been ...

    2024-08-03
    See translation