English

Researchers have developed a QCL DFB continuous laser for gas detection

1146
2023-08-16 14:22:27
See translation

Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.

In 2004, the first commercial laser was introduced.

Principle: In a single mode laser, the grating is etched into the active region to force the laser to operate at a very specific wavelength determined by the periodicity of the grating. Therefore, the laser emits in a unique spectral mode, which can be slightly adjusted by changing the temperature of the active region.

Gas detection

Continuous single mode lasers have a narrow linewidth, making them an ideal choice for gas detection. They can be adjusted within a maximum range of 10 cm-1; There are multiple modulation schemes available for different purposes. CW-DFB lasers (for continuous wave and distributed feedback) are mainly used in spectroscopy.

Available wavelengths between~625cm-1 and 2500cm-1 (4-16 μ m) Between, the power is 5-100mW. These lasers operate at room temperature. They are provided in the form of chips, base chips, or boxes, with functions such as temperature control, collimation, and fiber coupling.

Other applications: dual frequency comb high-resolution spectroscopy

A quantum cascade laser frequency comb is a device that emits light over a wide spectrum composed of equidistant peaks in the frequency space. Due to the fixed distance between these peaks, which is usually given by the repetition rate of ultrashort pulse sequences, they can be used as frequency domain benchmarks for frequency comb spectra.

In the mid infrared region, quantum cascade lasers that have been specifically studied for optical dispersion have been proven to emit wide and powerful optical frequency combs. Like ultra short pulse lasers, the mode spacing of QCL combs is given by the cavity length. However, in the case of QCL, the periodic modulation in the time domain is FM, not AM, so the output power is constant.

Unlike other comb like technologies, QCL based combs integrate pump lasers and microcavities into their waveguides. This makes it a very compact source. Based on QCL technology, these comb shaped devices can be manufactured across MWIR and LWIR.

The double comb spectrum depends on two local oscillators (OFCs), with slightly different peak spacing. The heterodyne beat frequency of two such combs consists of equally spaced peaks, representing the spectrum of laser in the RF domain.

QCL based dual comb spectroscopy provides the possibility of collecting high-resolution spectra in a wide spectral range of tens of cm-1 and in extremely short acquisition time (i.e. near real-time) at the µ s level. This technology combines the advantages of DFB QCL (i.e. narrow linewidth and mode hopping free tuning) with the large wavelength coverage of external cavity QCL.

Source: Laser Network


Related Recommendations
  • MKS Instruments announces full year 2024 financial report

    Recently, MKS Instruments released its Q4 and full year financial results for 2024. According to the report, MKS's revenue for the fourth quarter of 2024 reached $935 million, a year-on-year increase of 4.7%, with a GAAP net income of $90 million; In 2024, the annual revenue was nearly 3.6 billion US dollars, a year-on-year decrease of 0.9%. GAAP net revenue was 190 million US dollars, turning los...

    02-20
    See translation
  • Narrow band tunable terahertz lasers may change material research and technology

    A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.By tuning the light source to 10...

    2023-11-21
    See translation
  • Veeco's Laser Pulse Annealing (LSA) System Selected for DRAM Evaluation

    Veeco Instruments Inc. (NASDAQ: VECO) announced today that it has delivered its Laser Spike Annealing (LSA) system to a leading semiconductor memory company for evaluation by its advanced DRAM development team. This progress not only expands Veeco's business territory in the DRAM market, but also signifies a key advancement in the development of mass production technology for next-generation DRAM ...

    12-03
    See translation
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    See translation
  • Using Topological Photon Chips to Uncover the Secrets of Open Systems

    Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the su...

    2024-02-02
    See translation