English

The constantly developing world of all-weather laser satellite communication

195
2023-12-01 14:18:23
See translation

Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.

 

In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstration of optical communication technology occurred in the mid-1990s. For example, the Japan Communications Research Laboratory successfully demonstrated laser communication experiments on the Japanese Engineering Test Satellite VI in 1994, which was the first dedicated laser communication satellite used to demonstrate air to ground laser communication.

The reason for this interest in laser communication is that the optical communication systems we know today have several advantages over the currently used UHF, SHF, and EHF systems, including higher data rates, better signal-to-noise ratios due to higher directionality, no interference, smaller antennas, lower overall power requirements, higher spectrum availability, and narrower beams that are more difficult to intercept and interfere with, And establishing a network does not require coordination from the International Telecommunication Union.

As mentioned earlier, capacity has a major advantage. The spectrum is several thousand times larger than the radio frequency spectrum; Therefore, when the radio frequency ranges from approximately 300 Hz to 300 GHz, the spectrum ranges from approximately 400 to 800 terahertz. The frequency is so high that so many zeros are required, to the extent that optical communication systems are measured in nanometers, with 800 nm being a typical wavelength/frequency. Although the implemented data rate depends on the signal encoding scheme, generally speaking, they may be a thousand times higher than the rate in RF communication.

For many years, satellite laser communication has been a characteristic of the Ministry of National Defense's planning. Those involved in the ill fated transformational satellite communication program believe that it is necessary to connect TSAT's orbital laser satellite network with the global fiber optic network of the defense information system network, which connects the orbital laser ring in space to the ground global laser ring of the global fiber optic network. The solution is to deploy the Earth station in geographically dispersed mild weather locations to avoid the dissipation effects of rain, drizzle, clouds, fog, and dust.

This solution illustrates the drawbacks of known optical communication systems today. These systems have higher pointing accuracy required by satellites, increasing complexity and availability risks, and are noise sources for solar receivers. As mentioned earlier, they are the main interference factors in rain, drizzle, clouds, fog, and dust.

Despite atmospheric barriers, some experiments and systems are using air to ground lasers. Since the beginning of 2022, NASA's laser communication relay demonstration has demonstrated bidirectional laser communication from geostationary orbit.

The drawing board, brass plate, prototype, and initial launch of giant satellite constellations have multiple laser dependent networks. Telesat in Canada, with its constellation of light speed, may be a microcosm of laser communication networks, developing satellite to satellite connections on similar and different orbits. Although the system has been plagued by financial difficulties, design changes and increased investment seem to be putting it back on track. SpaceX's Starlink satellite internet service has launched over 25 satellites, and last year it was confirmed that laser satellites were used to provide internet connectivity to several regions, even though it was only air to air. Low Earth orbit satellites have over 5000 systems and concepts, providing numerous proposals and contract requests for laser terminal manufacturers.

Source: Laser Net

Related Recommendations
  • Researchers improve laser behavior by tying laser knots

    Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very counta...

    2024-03-07
    See translation
  • Short pulse lasers in the form of chips use the so-called mode coupling principle

    Nowadays, lasers that emit extremely short flashes can be found in many research laboratories, but they usually fill the entire room. Physicists have now successfully reduced this laser to the size of a computer chip. As they reported in the journal Science, their research can lay the foundation for extremely compact detectors.A team led by Qiushi Guo from the California Institute of Technology in...

    2023-11-10
    See translation
  • Pressure sensing using dual color laser absorption spectroscopy

    The research team led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences recently designed a concentration independent pressure sensing technology for high-temperature combustion diagnosis. This method is based on dual color laser absorption spectroscopy.The results of this study have been published in Optics Letters.Aircraft eng...

    2024-03-09
    See translation
  • Entangled photon pairs generated by quantum light sources can be used for quantum computing and cryptography

    A new device composed of semiconductor rings generates pairs of entangled photons, which can be used in photon quantum processors.Quantum light sources generate entangled photon pairs, which can be used in quantum computing and cryptography. A new experiment has demonstrated a quantum light source made from semiconductor gallium nitride. This material provides a multifunctional platform for devic...

    2024-03-30
    See translation
  • New laser technology can achieve more efficient facial recognition

    Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry P...

    2024-06-24
    See translation