English

Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

1043
2024-06-12 14:55:22
See translation

Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Technology.

Picosecond pulse lasers are often used in high-energy density physics basic research. As a key component of picosecond laser systems, the laser damage threshold of the reflector directly affects the output energy of the picosecond laser system. Traditional picosecond laser reflectors use hafnium oxide and silicon oxide as high and low refractive index materials, respectively. In recent years, composite materials, including nano layers and mixtures, have received widespread attention in improving the laser damage threshold of thin film components. Studying the picosecond reflectors of composite materials and their laser damage characteristics under different pulse widths of laser irradiation has certain practical application value.

Figure 1. (a) AFM microscopy images and RMS roughness of different mirrors (b) probability distribution of laser induced damage (8ps, 1053 nm)

Figure 2. Probability distribution of laser induced damage with different pulse widths (a) 0.5 ps (b) 1 ps and (c) 3 ps (d) Changes in laser damage threshold with laser pulse width

Researchers used electron beam evaporation technology to prepare four types of composite materials, including hafnium oxide/alumina nano layers, hafnium oxide/silicon oxide nano layers, hafnium oxide alumina mixtures, and hafnium oxide silicon oxide mixtures. Compared with single hafnium oxide materials, composite materials can inhibit crystallization and reduce surface roughness. Four types of reflective mirrors with operating wavelengths at 1053 nm were prepared using the above-mentioned composite materials and silicon oxide materials as high and low refractive index materials. The damage test results of the mirror under laser irradiation with different pulse widths (0.5 ps, 1 ps, 3 ps, and 8 ps) show that compared with the picosecond mirror using hafnium oxide as a high refractive index material, the picosecond mirror using composite materials as a high refractive index material exhibits a higher excitation damage threshold. Within the laser pulse range studied in this article, the initial laser damage mechanism of the reflector begins to change around 3 ps. This achievement is of great significance for improving the performance of optical thin film components such as picosecond laser reflectors.

Source: Shanghai Institute of Optics and Mechanics

Related Recommendations
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    The femtosecond laser emits ultra short optical pulses with a duration of less than one picosecond, reaching the femtosecond level (1fs=10-15s). The characteristics of femtosecond laser are extremely short pulse width and high peak intensity.Ultra short pulse trains can minimize residual heat, ensure precise material processing, and minimize incidental damage. Its high peak intensity can induce no...

    2024-04-02
    See translation
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    See translation
  • Researchers have successfully developed the world's first superconducting broadband photon detector

    Researchers at the National Institute of Information and Communication Technology in the United States have invented a new structure of a superconducting strip photon detector that can achieve efficient photon detection even in wide strips, and have successfully developed the world's first superconducting wide strip photon detector.The band width of the detector is more than 200 times that of trad...

    2023-11-02
    See translation
  • The team led by Gao Chunqing and Fu Shiyao from Beijing University of Technology has made significant breakthroughs in the study of photon angular momentum regulation

    Recently, a team led by Gao Chunqing and Fu Shiyao from the School of Optoelectronics at Beijing University of Technology combined optical spatial coordinate transformation with photon spin Hall effect to construct a photon angular momentum filter for the first time internationally, achieving on-demand regulation of photon spin angular momentum and orbital angular momentum.The related achievements...

    2023-10-20
    See translation
  • Dehaha launches laser cutting integrated machine screw compressor

    The revolution in the laser cutting industry is in full swing. Like the laser cutting machine industry, China's air compressor industry has developed rapidly in the past 20 years and has undergone iterative progress in response to the huge demands of various industries. It has gradually achieved a process from imitation to independent innovation.Recently, DHH Compressor has launched its latest inn...

    2024-05-27
    See translation