English

Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

1135
2024-06-12 14:55:22
See translation

Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Technology.

Picosecond pulse lasers are often used in high-energy density physics basic research. As a key component of picosecond laser systems, the laser damage threshold of the reflector directly affects the output energy of the picosecond laser system. Traditional picosecond laser reflectors use hafnium oxide and silicon oxide as high and low refractive index materials, respectively. In recent years, composite materials, including nano layers and mixtures, have received widespread attention in improving the laser damage threshold of thin film components. Studying the picosecond reflectors of composite materials and their laser damage characteristics under different pulse widths of laser irradiation has certain practical application value.

Figure 1. (a) AFM microscopy images and RMS roughness of different mirrors (b) probability distribution of laser induced damage (8ps, 1053 nm)

Figure 2. Probability distribution of laser induced damage with different pulse widths (a) 0.5 ps (b) 1 ps and (c) 3 ps (d) Changes in laser damage threshold with laser pulse width

Researchers used electron beam evaporation technology to prepare four types of composite materials, including hafnium oxide/alumina nano layers, hafnium oxide/silicon oxide nano layers, hafnium oxide alumina mixtures, and hafnium oxide silicon oxide mixtures. Compared with single hafnium oxide materials, composite materials can inhibit crystallization and reduce surface roughness. Four types of reflective mirrors with operating wavelengths at 1053 nm were prepared using the above-mentioned composite materials and silicon oxide materials as high and low refractive index materials. The damage test results of the mirror under laser irradiation with different pulse widths (0.5 ps, 1 ps, 3 ps, and 8 ps) show that compared with the picosecond mirror using hafnium oxide as a high refractive index material, the picosecond mirror using composite materials as a high refractive index material exhibits a higher excitation damage threshold. Within the laser pulse range studied in this article, the initial laser damage mechanism of the reflector begins to change around 3 ps. This achievement is of great significance for improving the performance of optical thin film components such as picosecond laser reflectors.

Source: Shanghai Institute of Optics and Mechanics

Related Recommendations
  • AMCM 8 laser M 8K metal 3D printing equipment is about to be launched, equipped with 8 lasers

    In October 2023, Germany's AMCM (EOS, a global technology leader in industrial grade additive manufacturing) announced the upcoming launch of the M 8K metal 3D printing equipment. The device will be equipped with 8 lasers, with a construction volume of 800 x 800 x 1200 millimeters, nearly four times the size of AMCM's previously launched M 4K metal 3D printing device on the market.ArianeGroup's ho...

    2023-10-19
    See translation
  • 330 million US dollars! This laser ophthalmic treatment developer has been acquired

    Recently, according to a report submitted by BioLight to the Tel Aviv Stock Exchange, Swiss American pharmaceutical and medical device giant Alcon Pharmaceuticals is acquiring Israeli medical technology company Belkin Vision.It is reported that BioLight will sell its 4% stake in Belkin Vision, which may be worth up to $330 million based on the milestones established in the transaction.Belkin Visio...

    2024-05-06
    See translation
  • Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology u...

    2024-04-22
    See translation
  • Chinese researchers enhance perovskite lasers by suppressing energy loss

    Limiting Auger recombination enables “record” quasi-continuous wave laser output.For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that...

    08-25
    See translation
  • Laser link between European Space Agency containers and space

    The latest expansion of the European Space Agency's laboratory is essentially portable: this European Space Agency's mobile optical ground station is housed in a standard container and can be transported throughout Europe as needed for laser based optical communication with satellites - including NASA's Psyche mission, in space millions of kilometers away.The station has officially become a part o...

    2024-02-12
    See translation