English

New, low-cost, and high-efficiency photonic integrated circuits

1016
2024-05-10 15:41:16
See translation

The rapid development of photonic integrated circuits (PICs) has combined multiple optical devices and functions on a single chip, completely changing optical communication and computing systems.



For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and integration with existing semiconductor manufacturing technologies, despite their limitations in electro-optic modulation bandwidth. Nevertheless, silicon optical transceiver chips on insulators have been successfully commercialized, driving information flow through millions of glass fibers in modern data centers.

Recently, the lithium niobate wafer platform on insulators has become a high-quality material for photonic integrated electro-optic modulators due to its strong Pockels coefficient, which is crucial for high-speed optical modulation. However, high costs and complex production requirements have hindered the wider adoption of lithium niobate, limiting its commercial integration.

Lithium tantalate (LiTaO 3) is a close relative of lithium niobate and has the potential to overcome these obstacles. It has similar excellent electro-optical quality, but has advantages in scalability and cost compared to lithium niobate, as it has been widely used in 5G RF filters in the telecommunications industry.

Now, scientists led by Professor Tobias J. Kippenberg from the Federal Institute of Technology in Lausanne and Professor Ou Xin from the Shanghai Institute of Microsystems and Information Technology (SIMIT) have created a new type of PIC platform based on lithium tantalate. PIC utilizes the inherent advantages of materials to make high-quality PIC more economically feasible, thereby changing the field. This breakthrough was published in the journal Nature.

Researchers have developed a lithium tantalate wafer bonding method that is compatible with silicon on insulator production lines. Then, they covered the thin film lithium tantalate chip with diamond-like carbon and continued to etch the optical waveguide, modulator, and ultra-high quality factor microresonator.

Etching is achieved by combining deep ultraviolet (DUV) lithography with dry etching technology, which was originally developed for lithium niobate and then carefully adjusted to etch harder and more inert lithium tantalate. This adjustment involves optimizing etching parameters to minimize optical losses, which is a key factor in achieving high-performance photonic circuits.

Through this method, the team was able to manufacture efficient lithium tantalate PIC with an optical loss rate of only 5.6 dB/m at telecommunication wavelengths. Another highlight is the electro-optic Mach Zehnder modulator (MZM), which is a widely used device in high-speed fiber optic communication today. The half wave voltage length product of lithium tantalate MZM is 1.9 V cm, and the electro-optic bandwidth reaches 40 GHz.
"While maintaining efficient electro-optical performance, we have also generated soliton micro combs on this platform," said Chengli Wang, the first author of the study. "These soliton micro combs have a large number of coherent frequencies, making them particularly suitable for applications such as parallel coherent lidar and photon computing when combined with electro-optical modulation functions."

The birefringence (dependence of refractive index on optical polarization and propagation direction) of lithium tantalate PIC is reduced, enabling dense circuit configurations and ensuring broad operational capabilities in all telecommunications frequency bands. This work paves the way for the scalable, cost-effective manufacturing of advanced optoelectronic PICs.

Source: Laser Net

Related Recommendations
  • Tesla Intelligent Robot Vacuum Laser AI200 has a maximum operating time of 130 minutes

    In most cases, devices that are part of so-called smart homes have become a part of our lives. These appliances have a significant impact on our comfort level and contribute to daily household chores, such as cleaning. There are many products in the market that have paved the way in this regard, but the amount we usually have to pay for them effectively prevents us from purchasing.Of course, we ca...

    2023-11-10
    See translation
  • Researchers at the Massachusetts Institute of Technology have designed a new type of quantum light source using lead salt perovskite nanoparticles

    Most traditional quantum computing uses the spin of supercooled atoms or individual electrons as quantum bits, which form the foundation of such devices. By comparison, if light is used to replace physical entities as basic quantum bits, ordinary lenses and optical detectors can replace expensive devices to control the data input and output of quantum bits.Based on this, chemistry professors Moung...

    2023-10-09
    See translation
  • Significant progress has been made in the manufacturing and measurement of EUV lithography light source collection mirrors

    Summary:To filter out infrared light from the driving light source in the extreme ultraviolet lithography (EUVL) light source system, a rectangular grating structure needs to be fabricated on the surface of the collection mirror. However, the collection mirror grating usually undergoes deformation during the manufacturing process, resulting in a decrease in filtering efficiency. The process errors...

    04-02
    See translation
  • Tunoptix makes breakthrough progress in meta optical platform

    Tunoptix, a developer of computational meta-optics, based in Seattle, WA, has made what it calls “a breakthrough in mobile-scale spectral imaging”. The company’s latest meta-optical platform captures high-fidelity spectral signatures across the visible-to-NIR spectrum in a compact form factor smaller than 1 cm3, consuming less than 500 mW, and operating at real-time frame rates.Tunoptix’s ultra-c...

    07-02
    See translation
  • Opton Laser commercializes ultra-high contrast third-order autocorrelators

    Recently, Opton Laser International, a supplier specializing in photonics, is currently distributing manufacturer UltraFast Innovations (UFI)'s ultra-high contrast third-order autocorrelator Tundra++. The new generation Tundra aims to characterize the temporal intensity distribution and quality of laser pulses with particularly high sensitivity.This is to avoid the harmful effects caused by the hi...

    2023-08-31
    See translation