English

New, low-cost, and high-efficiency photonic integrated circuits

120
2024-05-10 15:41:16
See translation

The rapid development of photonic integrated circuits (PICs) has combined multiple optical devices and functions on a single chip, completely changing optical communication and computing systems.



For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and integration with existing semiconductor manufacturing technologies, despite their limitations in electro-optic modulation bandwidth. Nevertheless, silicon optical transceiver chips on insulators have been successfully commercialized, driving information flow through millions of glass fibers in modern data centers.

Recently, the lithium niobate wafer platform on insulators has become a high-quality material for photonic integrated electro-optic modulators due to its strong Pockels coefficient, which is crucial for high-speed optical modulation. However, high costs and complex production requirements have hindered the wider adoption of lithium niobate, limiting its commercial integration.

Lithium tantalate (LiTaO 3) is a close relative of lithium niobate and has the potential to overcome these obstacles. It has similar excellent electro-optical quality, but has advantages in scalability and cost compared to lithium niobate, as it has been widely used in 5G RF filters in the telecommunications industry.

Now, scientists led by Professor Tobias J. Kippenberg from the Federal Institute of Technology in Lausanne and Professor Ou Xin from the Shanghai Institute of Microsystems and Information Technology (SIMIT) have created a new type of PIC platform based on lithium tantalate. PIC utilizes the inherent advantages of materials to make high-quality PIC more economically feasible, thereby changing the field. This breakthrough was published in the journal Nature.

Researchers have developed a lithium tantalate wafer bonding method that is compatible with silicon on insulator production lines. Then, they covered the thin film lithium tantalate chip with diamond-like carbon and continued to etch the optical waveguide, modulator, and ultra-high quality factor microresonator.

Etching is achieved by combining deep ultraviolet (DUV) lithography with dry etching technology, which was originally developed for lithium niobate and then carefully adjusted to etch harder and more inert lithium tantalate. This adjustment involves optimizing etching parameters to minimize optical losses, which is a key factor in achieving high-performance photonic circuits.

Through this method, the team was able to manufacture efficient lithium tantalate PIC with an optical loss rate of only 5.6 dB/m at telecommunication wavelengths. Another highlight is the electro-optic Mach Zehnder modulator (MZM), which is a widely used device in high-speed fiber optic communication today. The half wave voltage length product of lithium tantalate MZM is 1.9 V cm, and the electro-optic bandwidth reaches 40 GHz.
"While maintaining efficient electro-optical performance, we have also generated soliton micro combs on this platform," said Chengli Wang, the first author of the study. "These soliton micro combs have a large number of coherent frequencies, making them particularly suitable for applications such as parallel coherent lidar and photon computing when combined with electro-optical modulation functions."

The birefringence (dependence of refractive index on optical polarization and propagation direction) of lithium tantalate PIC is reduced, enabling dense circuit configurations and ensuring broad operational capabilities in all telecommunications frequency bands. This work paves the way for the scalable, cost-effective manufacturing of advanced optoelectronic PICs.

Source: Laser Net

Related Recommendations
  • The University of California has developed a pioneering chip that can simultaneously carry lasers and photonic waveguides

    A team of computer and electrical engineers at UC Santa Barbara, in collaboration with several colleagues at Caltech and another colleague at Anello Photonics, has developed a first-of-its-kind chip that can carry both laser and photonic waveguides. In a paper published in the journal Nature, the team describes how they made the chip and how it worked during testing.With the advent of integrated c...

    2023-08-10
    See translation
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    See translation
  • DataLase launches a new laser active transparent to white coating

    Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. Thi...

    2024-03-09
    See translation
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    See translation
  • Photovoltaic converters for power transmission systems

    Scientists from the University of Hahn in Spain and the University of Santiago de Compostela conducted research to determine the most suitable semiconductor materials for high-power light transmission in terrestrial and underwater environments.HPOT, also known as laser power transfer, is a method of transmitting continuous power to a remote system using a monochromatic light source through an opti...

    2023-12-29
    See translation