English

Fiber laser array for single pixel imaging is expected to achieve remote detection

1158
2024-05-15 14:14:21
See translation

Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.

It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive array detectors in remote sensing and non visible light imaging.

The imaging speed of SPI is always limited by the refresh rate of the spatial light modulator. For example, a typical digital micro mirror device (DMD) has a maximum refresh rate of 22kHz in binary mode. This limitation makes the implementation of real-time SPI difficult.

Researchers led by Professor Han Kai from the University of National Defense Technology of China (NUDT) are interested in single pixel imaging and fiber laser arrays. They proposed an effective SPI scheme using a phased fiber laser array and an untrained deep neural network.

Their research on efficient single pixel imaging based on compact fiber laser arrays and untrained neural networks is published in Frontiers of Optoelectronics.

Fiber lasers are arranged in a compact hexagonal structure and coherently combined to generate an illumination light field. By utilizing high-speed electro-optic modulators in each individual fiber laser module, randomly modulated fiber laser arrays can quickly project speckle onto objects of interest.

In addition, incorporating untrained deep neural networks into the image reconstruction process to improve the quality of reconstructed images.
Given its high transmission power (~kW) and potential for fast modulation (~MHz), researchers predict that the SPI scheme is expected to be applied in remote sensing and object detection.

Source: Laser Net

Related Recommendations
  • Coherent launches EDGE CUT20 OEM cutting solution

    Coherent launches EDGE CUT20 OEM cutting solution. By deeply integrating the new CUT20 laser cutting head with EDGE FL20 fiber laser, this solution brings three core advantages to high-performance sheet metal cutting: ultimate precision cutting quality, unprecedented process control capability, and intelligent process insights. At the heart of the EDGE CUT20 package is a co-engineered laser-and-...

    11-11
    See translation
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    See translation
  • Safran Group believes that additive manufacturing is playing an increasingly important role in engines

    Safran Group showcased a 3-foot diameter turbine aft casing manufactured using additive manufacturing technology under the RISE technology program at the Paris Air Show in recent years. This component is Safran's largest additive manufacturing component to date, indicating the increasingly widespread application of additive manufacturing in the design and manufacturing of turbofan engines. In ea...

    06-18
    See translation
  • XTool enables pre-sale of F1 superfiber and diode laser cutting machines

    Tool has started pre-sales for the F1 Ultra, a 20 watt fiber and diode dual laser engraving machine. OEMs have stated that it is a win-win product and its so-called "flagship" model.Fiber lasers are mainly used for metal materials and usually work faster than diode lasers, but other materials have better performance when using diode lasers. F1 Ultra aims to bridge this gap by using a power of 20W ...

    2024-05-09
    See translation
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

    Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer tes...

    2024-07-23
    See translation