English

Fiber laser array for single pixel imaging is expected to achieve remote detection

1160
2024-05-15 14:14:21
See translation

Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.

It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive array detectors in remote sensing and non visible light imaging.

The imaging speed of SPI is always limited by the refresh rate of the spatial light modulator. For example, a typical digital micro mirror device (DMD) has a maximum refresh rate of 22kHz in binary mode. This limitation makes the implementation of real-time SPI difficult.

Researchers led by Professor Han Kai from the University of National Defense Technology of China (NUDT) are interested in single pixel imaging and fiber laser arrays. They proposed an effective SPI scheme using a phased fiber laser array and an untrained deep neural network.

Their research on efficient single pixel imaging based on compact fiber laser arrays and untrained neural networks is published in Frontiers of Optoelectronics.

Fiber lasers are arranged in a compact hexagonal structure and coherently combined to generate an illumination light field. By utilizing high-speed electro-optic modulators in each individual fiber laser module, randomly modulated fiber laser arrays can quickly project speckle onto objects of interest.

In addition, incorporating untrained deep neural networks into the image reconstruction process to improve the quality of reconstructed images.
Given its high transmission power (~kW) and potential for fast modulation (~MHz), researchers predict that the SPI scheme is expected to be applied in remote sensing and object detection.

Source: Laser Net

Related Recommendations
  • The research team from the School of Engineering at Columbia University in the United States has broken through the "bandwidth bottleneck" of high-performance computing in new photonic chips

    When running various artificial intelligence programs such as large language models, although data centers and high-performance computers are not limited by the computing power of their individual nodes, the amount of data transmitted between nodes is currently the root cause of the limitations on the performance and bandwidth transmission of these systems.Because some nodes in the system are more...

    2023-10-31
    See translation
  • E&R Engineering launches a mold cutting solution at Semicon SEA 2024

    Advanced laser and plasma solution provider E&R Engineering Corp. has confirmed that they will participate in the Semiconductor SEA 2024 event held in Kuala Lumpur, Malaysia. With 30 years of focus in the semiconductor industry, E&R has developed a wide range of plasma and laser technologies. At Semicon SEA 2024, they will showcase their latest solutions, including:Plasma Cutting - Small M...

    2024-05-20
    See translation
  • Silicon Valley giants compete for a new 3D printing space race track

    Recently, Eric Schmidt, former CEO of Google, will take over as CEO of Relativity Space, marking his first CEO position since leaving Google.Relativity Space is known for producing rockets using unusual technologies, including 3D printers, automated robots, and artificial intelligence. In 2023, Relativity Space successfully launched the Terran 1 rocket, proving that its 3D printing technology can ...

    03-24
    See translation
  • TRUMPF plans to upgrade laser technology with quantum computing

    Recently, multiple research institutions in Germany, including the high-tech company TRUMPF, the Fraunhofer Institute for Laser Technology (ILT), and the Durham Center for Complex Quantum Systems at the Physics Department of the Free University of Berlin, are using quantum algorithms to explore the fundamental principles of laser physics. Its long-term goal is to significantly accelerate the devel...

    11-25
    See translation
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    See translation