English

Fiber laser array for single pixel imaging is expected to achieve remote detection

1151
2024-05-15 14:14:21
See translation

Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.

It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive array detectors in remote sensing and non visible light imaging.

The imaging speed of SPI is always limited by the refresh rate of the spatial light modulator. For example, a typical digital micro mirror device (DMD) has a maximum refresh rate of 22kHz in binary mode. This limitation makes the implementation of real-time SPI difficult.

Researchers led by Professor Han Kai from the University of National Defense Technology of China (NUDT) are interested in single pixel imaging and fiber laser arrays. They proposed an effective SPI scheme using a phased fiber laser array and an untrained deep neural network.

Their research on efficient single pixel imaging based on compact fiber laser arrays and untrained neural networks is published in Frontiers of Optoelectronics.

Fiber lasers are arranged in a compact hexagonal structure and coherently combined to generate an illumination light field. By utilizing high-speed electro-optic modulators in each individual fiber laser module, randomly modulated fiber laser arrays can quickly project speckle onto objects of interest.

In addition, incorporating untrained deep neural networks into the image reconstruction process to improve the quality of reconstructed images.
Given its high transmission power (~kW) and potential for fast modulation (~MHz), researchers predict that the SPI scheme is expected to be applied in remote sensing and object detection.

Source: Laser Net

Related Recommendations
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    See translation
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    See translation
  • Researchers treated MXene electrodes with lasers to improve lithium-ion battery performance

    Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have found that laser scribing or creating nanodots on battery electrodes can improve their storage capacity and stability. The method can be applied to an alternative electrode material called MXene.Lithium-ion batteries have multiple drawbacks in a wide range of applications, and researchers around ...

    2023-08-04
    See translation
  • Successful First Satellite Earth Laser High Speed Image Transmission Experiment

    Recently, the reporter learned from Changguang Satellite Technology Co., Ltd. (hereinafter referred to as "Changguang Satellite") that the company used a self-developed vehicle mounted laser communication ground station to conduct satellite ground laser high-speed image transmission experiments with the onboard laser communication terminal of the "Jilin No.1" constellation MF02A04 satellite and ac...

    2023-10-14
    See translation
  • A new approach to 3D printing has been published in a Nature journal

    In the last century, the improvement of mechanical properties of structural metals was mainly achieved through the creation of increasingly complex chemical compositions. The complexity of this ingredient increases costs, creates supply fragility, and makes recycling more complex.As a relatively new metal processing technology, metal 3D printing provides the possibility to re-examine and simplify ...

    2024-11-29
    See translation