English

Observation of laser power changes in ultrafast protein dynamics

1181
2024-02-28 15:00:41
See translation

When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state without noticing.".

The laser did not observe a single photon excitation pathway that reflects the natural dynamics of myoglobin, but instead violently collided to induce multiphoton absorption. This raises a question, is the oscillation they see in protein artifacts this more energetic excitation? Now, Schlichting and her team have conducted experiments again at lower power for inspection.

The result surprised Schlichting. "We anticipate slight changes in the dynamics, but what we see is a significant change in carbon monoxide," she said. Unlike the instant photolysis they observed at high laser power, this reaction took hundreds of femtoseconds at low power. She said that the group modeled their observations and attributed their results to two different reaction pathways, the latter of which may better represent real reactions.

However, myoglobin only differs slightly at low power. This reassures Richard Neutz, a biochemistry professor at the University of Gothenburg. Although unrelated to the group, he did review the work before publication and wrote corresponding opinions on the impact of the results. "This work is very important because it indicates that we were not completely wrong before," he said. Essentially, past high-power experiments were not perfect, but still provided valuable insights into protein dynamics. "On the other hand," Neutze said, "the author also suggests that if you are really interested in ultrafast chemistry, it is important to conduct experiments correctly because there are subtle differences in the mechanisms that are important.".

In the end, Schlichting said that researchers only need to remain transparent about the systems they are engaged in. These experiments themselves are challenging. "Sometimes you either go home without any data or do it in a multiphoton state," she said, "but you should be honest with it.".

Source: Laser Net

Related Recommendations
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    See translation
  • Strengthening the market position: LILA integrates ADAM Lasertechnik

    Laser Integration Laser Applikation (LILA) GmbH is taking over ADAM Lasertechnik on April 1, 2025 and will continue to run the company as part of an external succession plan. This means that not only the expertise but also the proven technology of 3D laser welding with wire feed will be retained.“We are delighted to have found an industry-experienced partner in LILA GmbH, who will continue the bus...

    03-13
    See translation
  • Scientists have developed a palm sized femtosecond laser using a glass substrate

    Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after y...

    2023-10-04
    See translation
  • Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

    A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use...

    2024-02-19
    See translation
  • The innovative application of carbon fiber laser cutting in the aircraft fuselage can significantly reduce the overall weight and reduce fuel consumption

    As one of the important means of transportation in modern society, the safety and performance of aircraft have always been the focus of attention. Behind the continuous pursuit of technological breakthroughs in the aviation industry, carbon fiber materials, as a lightweight and high-strength material, are gradually emerging in the application of aircraft fuselage.Combined with the application of ...

    2023-08-23
    See translation