English

Observation of laser power changes in ultrafast protein dynamics

1183
2024-02-28 15:00:41
See translation

When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state without noticing.".

The laser did not observe a single photon excitation pathway that reflects the natural dynamics of myoglobin, but instead violently collided to induce multiphoton absorption. This raises a question, is the oscillation they see in protein artifacts this more energetic excitation? Now, Schlichting and her team have conducted experiments again at lower power for inspection.

The result surprised Schlichting. "We anticipate slight changes in the dynamics, but what we see is a significant change in carbon monoxide," she said. Unlike the instant photolysis they observed at high laser power, this reaction took hundreds of femtoseconds at low power. She said that the group modeled their observations and attributed their results to two different reaction pathways, the latter of which may better represent real reactions.

However, myoglobin only differs slightly at low power. This reassures Richard Neutz, a biochemistry professor at the University of Gothenburg. Although unrelated to the group, he did review the work before publication and wrote corresponding opinions on the impact of the results. "This work is very important because it indicates that we were not completely wrong before," he said. Essentially, past high-power experiments were not perfect, but still provided valuable insights into protein dynamics. "On the other hand," Neutze said, "the author also suggests that if you are really interested in ultrafast chemistry, it is important to conduct experiments correctly because there are subtle differences in the mechanisms that are important.".

In the end, Schlichting said that researchers only need to remain transparent about the systems they are engaged in. These experiments themselves are challenging. "Sometimes you either go home without any data or do it in a multiphoton state," she said, "but you should be honest with it.".

Source: Laser Net

Related Recommendations
  • ICFO launches its 13th subsidiary Shinephi for interferometric imaging

    Barcelona-based photonics research center ICFO has announced the creation of its 13th Spin-off company, Shinephi. The official launch of the company was jointly made at the end of July by Dr. Roland Terborg (CEO and co-founder), Dr. Iris Cusini (CTO and co-founder) and ICREA Prof. at ICFO Valerio Pruneri (Technology Advisor and co-founder), accompanied by Dr. Silvia Carrasco, Vice Director of Inno...

    08-11
    See translation
  • The Role of Active Tunable Laser in GeSn Nanomechanical Oscillator in Nat Nanotechnology

    It is reported that researchers from Nanyang Technological University in Singapore, Federal Institute of Technology Lausanne in Switzerland, Physics Laboratory of Higher Normal University in Paris, National Center for Scientific Research in France, Sorbonne University, City University of Paris, University of Leeds in the UK, and Korean Academy of Science and Technology (KAIST) have reported on the...

    2024-05-14
    See translation
  • Snapmaker Announces Its First Dedicated Laser Cutter, the Ray, in 20w and 40w Flavors

    Snapmaker has been making three-in-one manufacturing tools -- The Snapmaker, Snapmaker 2 and Artisan -- for over six years now. These machines have changeable tool heads that can be used for 3D printing, laser cutting and CNC machining. At the beginning of this year, it branched out to make adedicated 3D printer, the J1-- a dual print-head machine that works very well -- and today the ...

    2023-08-28
    See translation
  • Graphene terahertz absorber and graded plasma metamaterials

    Optical metamaterials are an effective way to utilize their superior photon capture capabilities. Therefore, perfect absorbers can be achieved through nanoscale resonant plasmas and metamaterial structures.Metamaterial perfect absorbers (MPAs) are typically composed of periodic subwavelength metals (such as plasma superabsorbers) or dielectric resonance units. Compared with static passive physical...

    2024-05-20
    See translation
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    See translation