English

Observation of laser power changes in ultrafast protein dynamics

1052
2024-02-28 15:00:41
See translation

When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state without noticing.".

The laser did not observe a single photon excitation pathway that reflects the natural dynamics of myoglobin, but instead violently collided to induce multiphoton absorption. This raises a question, is the oscillation they see in protein artifacts this more energetic excitation? Now, Schlichting and her team have conducted experiments again at lower power for inspection.

The result surprised Schlichting. "We anticipate slight changes in the dynamics, but what we see is a significant change in carbon monoxide," she said. Unlike the instant photolysis they observed at high laser power, this reaction took hundreds of femtoseconds at low power. She said that the group modeled their observations and attributed their results to two different reaction pathways, the latter of which may better represent real reactions.

However, myoglobin only differs slightly at low power. This reassures Richard Neutz, a biochemistry professor at the University of Gothenburg. Although unrelated to the group, he did review the work before publication and wrote corresponding opinions on the impact of the results. "This work is very important because it indicates that we were not completely wrong before," he said. Essentially, past high-power experiments were not perfect, but still provided valuable insights into protein dynamics. "On the other hand," Neutze said, "the author also suggests that if you are really interested in ultrafast chemistry, it is important to conduct experiments correctly because there are subtle differences in the mechanisms that are important.".

In the end, Schlichting said that researchers only need to remain transparent about the systems they are engaged in. These experiments themselves are challenging. "Sometimes you either go home without any data or do it in a multiphoton state," she said, "but you should be honest with it.".

Source: Laser Net

Related Recommendations
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    See translation
  • 2026 SPIE Entrepreneurship Challenge Opens for Registration

    Applications are now open for the 2026 SPIE Startup Challenge. The annual entrepreneurial pitch competition is held by SPIE, the international society for optics and photonics, as part of SPIE Photonics West.In 2026, Photonics West will be held 17-22 January in San Francisco’s Moscone Center, with the SPIE Startup Challenge finals being held 20 January.The SPIE Startup Challenge is a competitive e...

    09-08
    See translation
  • Japanese and Australian teams use lasers to search for space debris the size of peanuts

    It is reported that Japanese startup EX Fusion will soon reach an agreement with Australian space contractor Electric Optical Systems to conduct on-site testing of technology for tracking small space debris orbiting Earth.Image source: LeolabsEX Fusion, headquartered in Osaka, specializes in the laser business with the goal of achieving commercial laser fusion reactors. So far, nuclear fusion rese...

    2023-10-10
    See translation
  • This semiconductor integrator launches laser chip and array technology

    Recently, Sivers Semiconductors, a well-known chip and integration module supplier in Sweden, announced that its subsidiary Sivers Photonics is partnering with ecosystem partners to showcase its advanced laser chip and array technology at the OFC conference in Santiago.The first on-site demonstration used Ayar Labs optical I/O and CW-WDM MSA compatible SuperNova ™ The light source is powered...

    2024-03-29
    See translation
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    2024-08-22
    See translation