English

Enhanced laser heterodyne spectroscopy contributes to the measurement of atmospheric greenhouse gases

1012
2023-10-25 15:48:05
See translation

The research team led by Professor Gao Xiaoming of the Chinese Academy of Sciences Hefei Institute of Physical Sciences has improved the measurement accuracy of atmospheric greenhouse gases by using erbium-doped fiber amplifier assisted laser heterodyne radiometer.

The study was published in the Journal of Optics and was selected as an editor's selection.

LHR is renowned for its high sensitivity and spectral resolution, and has become the next generation of lightweight satellite payloads. However, during the scanning process, signals measured by heterodyne radiometers often encounter issues such as reduced baseline slope and signal-to-noise ratio, which can affect measurement accuracy.

In this study, researchers developed a near-infrared laser heterodyne spectroscopy detection scheme based on EDFA.
By adjusting the EDFA for automatic power control, researchers successfully amplified and stabilized the power of the local oscillator DFB laser, thereby significantly reducing baseline fluctuations. This optimization significantly improves the accuracy of the processed atmospheric transmission spectrum.

By using EDFA with automatic power locking function, the LHR can be operated in a state dominated by shot noise during scanning. By eliminating errors caused by baseline slope, EDFA assisted LHR significantly improves its performance.

"This optimization enables LHR to operate in a state dominated by shot noise during the scanning process, "said team member Dr. Li Jun.

In the experimental measurement of atmospheric CO, EDFA assisted LHR was used for the transmission spectrum, and the signal-to-noise ratio of the heterodyne signal was increased by three times.

"These results demonstrate the effectiveness of EDFA assisted LHR in achieving higher accuracy and precision in atmospheric gas measurement, "Dr. Li said.

The team stated that this discovery can improve ground level LHR remote sensing and enhance greenhouse gas knowledge and monitoring.

Related Recommendations
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    See translation
  • Bodor Laser: Laser Cutters Rank First in Global Sales for Six Consecutive Years

    On February 27, at Bodor Laser's global headquarters base in Licheng District, Jinan City, three automated production lines were operating at full capacity, struggling to meet the overwhelming demand. Lu Guohao, Secretary of the Board and Director of the President's Office at Bodor Laser, revealed that the company's laser cutter shipments exceeded 8,000 units in 2024, securing the top spot in glob...

    03-10
    See translation
  • Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

    Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manu...

    2023-08-21
    See translation
  • Low noise! Switzerland develops a new type of laser

    According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.Small laser system (I...

    2024-07-03
    See translation
  • Laser Uranium Enrichment Company (GLE) accelerates development

    Paducah, located in western Kentucky, may become the location of the world's first commercial facility to adopt this technology.Since 2016, Global Laser Enrichment Company (GLE) has partnered with the US Department of Energy to use its unique molecular process to concentrate 200000 tons of depleted uranium "tails" stored at the former Padiuka gas diffusion plant in western Kentucky.After years of ...

    2024-06-22
    See translation