English

EO Technologies from South Korea enters the glass substrate processing market

85
2024-06-18 15:44:27
See translation

Recently, EO Technologies, a well-known semiconductor laser processing equipment manufacturer in South Korea, is emerging in the glass substrate processing market.

It is understood that EO Technologies is entering the glass substrate TGV market based on its UV laser drilling equipment originally used in PCB substrate technology. TGV technology is the core process for drilling holes inside glass substrates. EO Technologies has now started providing relevant laser process equipment to Samsung Electronics and Apple (based on end users).

Previously, EO Technologies focused on the laser drilling market based on its ability to produce DPSS ultraviolet laser sources, and supplied UV laser drilling equipment to PCB manufacturers such as Samsung Electric, whose end users are Samsung Electronics.

Since the end of last year, companies such as Samsung Electric have expressed their intention to enter the glass substrate business. It seems that the concept of glass substrates is gradually deeply integrated into the existing PCB market. However, currently, Samsung Electric's UV laser drilling equipment has relatively small sales in the PCB business field.

According to industry insiders, since the second half of last year, EO Technologies has been using TGV drilling equipment for glass substrate processing for multiple customers, including Samsung Electric, and is currently conducting yield testing.

Given that the market is still in its early stages, Samsung Electronics' packaging technology is expected to take at least 1 to 2 years to mature. However, once entering the mass production stage, this technology will form a synergistic effect with Samsung Electronics' memory department and its renowned laser marking supply line, jointly forming a promising sales growth point.

The core challenge of glass substrate TGV technology lies in successfully penetrating the drill bit through the core layer and the insulation layer of ABF. The industry has highly praised EO Technologies' UV laser drilling equipment, as it uses low pulse, high-energy laser technology to accurately drill holes with diameters as low as 10um or even smaller.

However, the key to this process lies in overcoming the problem of glass breakage to ensure high yield during mass production.
According to the latest news, EO Technologies' UV laser drilling technology on double-layer glass substrates is nearing commercialization, but overcoming material vulnerability is still considered a key prerequisite for technological breakthroughs. At present, the estimated production of this technology is still below 50%.

Since 2020, EO Technologies has been providing laser annealing equipment for Samsung Electronics' DRAM 1z (15nm level) mass production process, and has the same equipment on the HBM production line. Based on its long-term partnership with Samsung Electronics, EO Technologies has recently expanded its customer network to include TSMC and Apple.

It is worth mentioning that Apple is currently actively evaluating the application prospects of glass substrate technology in the next generation of mobile application processors (APs), and the possibility of cooperation with companies such as Samsung Electric is gradually increasing.

This may be an opportunity for EO Technologies, which has established a solid cooperation framework with Samsung and Apple. At present, Samsung Electric has successfully provided the relevant process products to Apple.

As of now, EO Technologies has not confirmed this incident. According to an insider, EO Technologies is currently testing laser drilling machines related to glass substrates, but due to strong NDA (confidentiality agreement) with customers, further progress is difficult to confirm.

Source: OFweek

Related Recommendations
  • Solar cell laser processing deserves attention

    Laser processing is a relatively emerging non-contact processing method that utilizes the high energy of a beam of light to interact with materials and instantly vaporize or change their properties to achieve the expected manufacturing effect. It has gradually been promoted and applied in China in the past 20 years. Due to the different types, pulse widths, and wavelengths of laser generators, the...

    2023-10-31
    See translation
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    See translation
  • Scientists use the light inside fibers as thin as hair to calculate

    Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers."Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next majo...

    2024-01-20
    See translation
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    See translation
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    See translation