English

Jingyi Optoelectronics launches a transmittance detector to detect the near-infrared transmittance characteristics of plastic materials

35
2024-04-11 15:28:09
See translation

Laser welding plastic transmittance tester is an important industrial testing equipment used to measure the transmittance of plastic after welding, in order to evaluate welding quality and product performance. With the widespread application of plastic products in various fields, the requirements for plastic welding quality and transparency are also increasing. Therefore, laser welded plastic transmittance detectors play a crucial role in the plastic processing industry.

The core principle of a laser welding plastic transmittance detector is to use a laser beam to irradiate the test sample and calculate the transmittance by measuring the intensity of the transmitted light. During laser welding, plastic materials are subjected to high temperature and pressure in the welding area, resulting in melting and recrystallization, forming a continuous whole. However, during the welding process, defects such as poor welding, porosity, and cracks may occur, which can have a negative impact on the transparency performance. Therefore, by measuring the transmittance, welding quality can be detected and evaluated in a timely manner, providing a basis for product quality control and improvement.

The laser welding plastic transmittance detector has various advantages. Firstly, it uses laser as the light source, which has the characteristics of single wavelength, high brightness, and good directionality, and can provide stable and reliable measurement results. Secondly, the instrument has fast and accurate measurement capabilities, which can complete a large number of sample measurements in a short time and improve production efficiency. In addition, the instrument also has the characteristics of easy operation and high degree of automation, reducing the difficulty and error of manual operation, and improving the accuracy and reliability of measurement.

In practical applications, laser welded plastic transmittance detectors are widely used in fields such as automobiles, electronics, and healthcare. For example, in automotive manufacturing, plastic welding is widely used in the manufacturing process of components such as car bodies and interiors. By using a laser welding plastic transmittance detector, welding defects can be detected in a timely manner, improving the sealing and appearance quality of the vehicle body. In the electronics industry, plastic products are widely used in packaging, connectors, and other fields. laser
The measurement of welding plastic transmittance detector can ensure welding quality, improve product reliability and stability. In the medical industry, plastic products are widely used in fields such as medical devices and surgical instruments. The measurement of laser welding plastic transmittance detector can ensure the transparency and clarity of medical devices, improve the accuracy and safety of surgical operations.

In addition to the above application areas, laser welded plastic transmittance detectors can also be applied in other fields, such as aerospace, construction, etc. With the continuous progress of technology and the expansion of applications, laser welded plastic transmittance detectors will play an important role in more fields.

In summary, laser welded plastic transmittance detector is an important industrial testing equipment with broad application prospects and market demand. It can not only provide accurate and reliable measurement results, but also improve production efficiency and product quality. With the continuous development of technology and the expansion of the market, laser welding plastic transmittance detectors will be applied and promoted in more fields.

We use Jingyi Optoelectronics to launch this transmittance detector specifically designed to detect the near-infrared transmittance characteristics of plastic materials, which scans the transmittance of injection molded parts in full screen. According to the needs, the detection area can be freely defined and the transmittance range can be set. The transmittance and impurities in the detection area can be automatically extracted and identified, and the impurity position can be automatically marked. This product is suitable for multi-point testing of samples, avoiding missed tests. The testing operation is convenient, and there is no need for positioning fixtures. The testing speed is extremely fast, and the measurement is completed within one second.

Source: Sohu

Related Recommendations
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    See translation
  • NLIGHT releases new fiber laser products

    Recently, nLIGHT launched a new series of ProcessGUARD fiber lasers, which innovatively integrates process monitoring systems with fiber lasers and is committed to providing quality "protection" for applications such as cutting, welding, and additive manufacturing.New ConceptThe nLIGHT ProcessGUARD series fiber laser integrates a photodiode based plasma process monitoring system into the nLIGHT Co...

    2024-11-07
    See translation
  • Artificial intelligence accelerates the process design of 3D printing of metal alloys

    In order to successfully 3D print metal parts to meet the strict specifications required by many industries, it is necessary to optimize process parameters, including printing speed, laser power, and layer thickness of deposited materials.However, in order to develop additive manufacturing process diagrams that ensure these optimal results, researchers have to rely on traditional methods, such as ...

    2024-02-27
    See translation
  • Sivers will develop laser arrays for artificial intelligence and deliver prototypes in 2024

    Sivers Optics, a subsidiary of Sivers Semiconductors, has signed a product development agreement with an undisclosed company.Starting from the initial contract worth $1.3 million, the prototype will be delivered in 2024, and it is expected that the agreement will grow rapidly in 2025 before transitioning to mass production. After entering full production, customers expect the annual chip productio...

    2024-03-18
    See translation
  • French laser giant's profits decline, laser radar business restructuring

    Recently, Marvel Fusion, a pioneer in the field of laser fusion, successfully raised 62.8 million euros (approximately 70.3 million US dollars) in funding. This funding will provide strong impetus for its fusion technology demonstration on existing laser equipment and accelerate the comprehensive technology validation process at its facility in Colorado, with the goal of achieving this milestone b...

    2024-10-09
    See translation