English

Revealing the essence of optical vortices: a step towards understanding the interaction between light and matter

105
2023-12-29 14:15:32
See translation

In a groundbreaking scientific study published in Volume 13 of the Scientific Report, researchers reported on the results of Young's double slit interference experiment using oscillating vortex radiation under a photon counting system. The experiment involves using a spiral oscillator to emit second harmonic radiation in the ultraviolet range. Using an ultra narrow bandpass filter in the low current mode of the electronic storage ring to isolate this radiation and achieve successful counting measurements.

It is worth noting that researchers have observed individual photon spots randomly distributed on the detector. However, when these light spots are integrated together, they reveal interference fringes that exhibit optical vortex characteristics, such as dark fringes at the center, broken and twisted fringes. The reproducibility of these interference fringes was confirmed by calculating the optical path difference between the optical vortex reaching the double slit and the normal double slit interference.

This observation indicates that even single photons emitted by high-energy electrons in spiral motion exhibit optical vortex properties, characterized by spiral wavefronts. In fact, this is the first time this special feature has been observed in a single photon.

Optical vortices are known for their spiral wavefronts and their relationship with orbital angular momentum, which have aroused great interest in our understanding of light matter interactions. They have been studied in various environments, including spectroscopic measurements, particle capture, and their applications in STED microscopy.

Traditionally, the generation of optical vortices is achieved by transforming a Gaussian laser beam. However, this study suggests that the harmonic components of electromagnetic waves emitted by electrons in helical motion naturally have a helical phase structure. This breakthrough discovery raises an interesting question of whether individual electrons generate optical vortices and whether each photon has a spiral wavefront structure. These findings are expected to make significant contributions to the ongoing study of optical wave particle duality.

Source: Laser Net

Related Recommendations
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    See translation
  • Mei Xin Sheng: The development of high-precision polarized light crown products has been completed

    On September 5, when Mei Xin Sheng held an analyst meeting, it said that the company has launched a fully integrated ultra-low power optical proximity detection sensor and a three-in-one ambient light and proximity detection sensor with ultra-high sensitivity, which have entered mass production.The research and development of high-precision polarized light crown products has been completed, the fe...

    2023-09-05
    See translation
  • Trumpf Laser releases latest fiscal year data

    Recently, German laser giant Trumpf released data for the fiscal year 2023/24. The latest financial report shows that the group's sales decreased by 4% and order volume decreased by 10% in the fiscal year 2023/24.Despite these setbacks, Germany has become the company's strongest single market for the first time in many years, highlighting a shift in market dynamics.At the end of this fiscal year, ...

    2024-07-19
    See translation
  • Creating Laser Sensors with Soap Bubbles: Discovery of Game Changing Rules

    Scientists from the University of Ljubljana in Slovenia have made groundbreaking discoveries and discovered a new innovative application of soap bubbles. By transforming these seemingly simple entities into laser sensors, they unleash the potential to detect electric fields and pressures. This extraordinary development has opened the door to various possibilities.Researchers at the University of L...

    2023-11-20
    See translation
  • Chinese University of Science and Technology Reveals a New Physical Mechanism of Photoinduced Particle Rotation

    Light has angular momentum properties. Circularly polarized or elliptically polarized beams carry spin angular momentum (SAM), while beams with helical phase wavefronts carry orbital angular momentum (OAM). During the interaction between light and particles, the transfer of angular momentum can generate optical torque, driving particles to rotate. Among them, the transfer of optical spin angular m...

    2024-06-25
    See translation