English

The LANL Laboratory in the United States has achieved a light source that generates a circularly polarized single photon stream using a quantum light emitter

82
2023-09-02 14:48:48
See translation

Los Alamos National Laboratory (LANL) has developed a method for a quantum light emitter that stacks two different atomically thin materials together to achieve a light source that produces a stream of circularly polarized single photons. These light sources can in turn be used for a variety of quantum information and communication applications.

According to Los Alamos researcher Han Htoon, the work shows that single-layer semiconductors can emit circularly polarized light without the need for an external magnetic field.

"This effect has previously only been possible with high magnetic fields generated by bulky superconducting magnets, by coupling quantum emitters to very complex nanoscale photonic structures, or by injecting spin-polarized charge carriers into the quantum emitters." Our proximity effect approach has the advantage of low manufacturing costs and high reliability."

Polarization states are a means of encoding photons, so this result is an important step in the direction of quantum cryptography, or quantum communication. "With a light source that produces a single photon stream and introduces polarization, we basically have two devices in one."

The team stacked a single-molecule thick layer of tungsten diselenide semiconductors on top of a thicker layer of magnetic nickel-phosphorus trisulfide semiconductors. Using an atomic force microscope, the team created a series of nanoscale indentations on a thin layer of material.

When the laser is focused on the pile of material, the 400 nanometer-diameter indentation created by the atom microscope tool has two effects. First, the indentation forms a "well" or "depression" in the potential energy landscape. The electrons of the tungsten diselenide monolayer fall in the depression. This stimulates the emission of a single photon from the trap.

The nanoindentation also destroys the typical magnetic properties of the underlying nickel-phosphorus trisulfide crystals, creating a local magnetic moment pointing outward from the material. This magnetic moment causes the emitted photon to be circularly polarized. To experimentally confirm this mechanism, the team first conducted high-magnetic field spectroscopy experiments in collaboration with the Pulse Field Facility at the Los Alamos National High Magnetic Field Laboratory. The team then worked with the University of Basel in Switzerland to measure the tiny magnetic field of the local magnetic moment.

The team is now exploring ways to modulate the degree of circular polarization of single photons through electronic or microwave stimulation. This ability would provide a way to encode quantum information into a stream of photons. Further coupling of the photon stream to the waveguide will provide the photonic circuit so that the photons propagate in one direction. Such circuits will become a fundamental component of an ultra-secure quantum Internet.

Source: OFweek

Related Recommendations
  • 253 million US dollars! This Canadian medical fiber optic sensor manufacturer will be acquired

    Recently, Haemantics Corporation, which focuses on providing innovative medical solutions with proprietary optical technology, announced that the company has reached a final agreement. According to the agreement, Haemonics will acquire all outstanding shares of Canadian fiber optic sensor manufacturer OpSens for CAD 2.90 per share.This is an all cash transaction with a fully diluted equity value o...

    2023-10-18
    See translation
  • Probe organization of photoacoustic devices using low-cost laser diodes

    Photoacoustic technology provides a non-invasive method for detecting biological tissues, but its clinical application is limited, partly due to the large volume and high cost of laser sources. A compact PA sensing instrument powered by laser diodes for biomedical tissue diagnosis can provide clinical doctors with a practical and effective tool for evaluating breast diseases.By providing a cost-ef...

    2024-03-06
    See translation
  • Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

    On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang ...

    02-18
    See translation
  • Ruifeng constant green laser: With dense and concentrated characteristics, it can accurately cut on PCBs and FPCs

    In the vigorous development of contemporary technology, green laser has become a shining star in the field of electronics. Not only because of its excellent performance, but also because it brings infinite imagination and creative inspiration to creators. The use of green laser for PCB (Printed Circuit Board) and FPC (Flexible Printed Circuit Board) shape cutting has opened up a new artistic journ...

    2023-09-19
    See translation
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    See translation