English

New insights into the interaction between femtosecond laser and living tissue

1057
2024-06-07 14:10:38
See translation

The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.

To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photoscience (MPL), as well as Max Planck Zentrum f ü r Physik und Medizin, collaborated to determine the conditions under which strong pulsed lasers can be used in the body without damaging the organism.

The international team based in Erlangen used vertebrate zebrafish to investigate the mechanism of deep tissue light damage triggered by femtosecond excitation pulses at the cellular level. The research results have been published in the Journal of Communication Physics.

The first author of this publication, Dr. Soyeon Jun from the MPL "Femtosecond Field Mirror" group led by Fattahi, explained, "We have demonstrated that when the central nervous system (CNS) of zebrafish is irradiated with 1030 nm femtosecond pulses, it suddenly occurs at the extreme peak intensity required for low-density plasma formation.".

As long as the peak intensity is below the low plasma density threshold, this allows for non-invasive increase in imaging residence time and photon flux during 1030 nm irradiation. This is crucial for nonlinear unlabeled microscopes.

"These findings have greatly promoted the advancement of deep tissue imaging technology and innovative microscopy techniques, such as femtosecond field microscopy, which is currently being developed in my group. This technology can capture high spatial resolution, unlabeled images with attosecond time resolution," Fattahi said.

"Our research findings not only highlight the value of collaboration in the fields of physics and biology, but also pave the way for in vivo applications to achieve precise manipulation of the central nervous system based on light," added Wehner, head of the Neuroregeneration Research Group.

Source: Laser Net

Related Recommendations
  • Dark Solitons Discovered in Ring Semiconductor Lasers

    Dark solitons - the extinction region in a bright background - spontaneously form in a ring semiconductor laser. Observations conducted by an international research group may lead to improvements in molecular spectroscopy and integrated optoelectronics.Frequency comb - a pulse laser that outputs light at equidistant frequencies - is one of the most important achievements in the history of laser ph...

    2024-02-01
    See translation
  • WEC acquires precision laser cutting giant Laser Profiles Ltd

    Recently, WEC Group, a leading engineering and manufacturing company in the UK, announced that it has completed the acquisition of Laser Profiles Ltd, a precision laser cutting leader in Bournemouth. For over 40 years, WEC Group has been providing manufacturing, laser cutting, precision machining, waterjet cutting, powder coating, and CCTV installation solutions.The company stated that the acqui...

    2024-08-19
    See translation
  • Unsupervised physical neural network empowers stacked imaging denoising algorithm

    In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engin...

    03-25
    See translation
  • STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

    STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.After the launch of 160 micron fiber at the 2023 India Mobile...

    2023-11-01
    See translation
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    See translation