English

New types of lenses in optics: Researchers develop hybrid achromatic lenses with high focusing efficiency

36
2023-12-11 14:58:36
See translation

Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices.

 

These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses can be constructed into arrays to form larger images for use in achromatic light field imagers and displays.

This study was led by materials science and engineering professors Paul Braun and David Cahill, electrical and computer engineering professor Lynford Goddard, and former graduate student Corey Richards. The results of this study are published in Nature Communications.

Braun said, "We have developed a method that can create structures with classical compound optical functions but highly miniaturized and thin through non-traditional manufacturing methods.".

In many imaging applications, there are multiple wavelengths of light, such as white light. If a single lens is used to focus this type of light, different wavelengths are focused at different points, resulting in blurred image colors. To solve this problem, multiple lenses are stacked together to form an achromatic lens. "In white light imaging, if you use a single lens, you will have significant dispersion, so each component color is focused at different positions. However, when using an achromatic lens, all colors are focused at the same point," Braun said.

However, the challenge lies in the relatively thick stacking of lens components required for manufacturing achromatic lenses, which makes classical achromatic lenses unsuitable for newer and smaller technology platforms, such as ultra compact visible light wavelength phase machines, portable microscopes, and even wearable devices.
In order to form a thinner lens, the team combined a refractive lens with a planar diffractive lens. Braun explained that the bottom lens is a diffractive lens, for example, focusing red light closer, while the top lens is a refracting lens that can further focus red. They cancel each other out and focus on the same position.

In order to create a compact hybrid achromatic imaging system, researchers have developed a manufacturing process called subsurface controllable refractive index through beam exposure, where the polymer structure is 3D printed in a porous silicon main medium that mechanically supports optical components. In this process, liquid polymers are filled into porous silicon and converted into solid polymers using ultrafast lasers. Through this method, they are able to integrate diffraction and refractive elements of lenses without the need for external support, while minimizing volume, improving manufacturing convenience, and providing efficient achromatic focusing.

Richards explained, "If you print a lens in the air and want to stack two lenses together, you need to print the first lens and establish a support structure around it." Then, you need to print the second lens within that support structure. But in porous silicon, you can hang the two lenses together. In this sense, integration is more seamless.

By using this method, a larger area of image can be reconstructed from a mixed achromatic microlens array. This array can capture light field information, which is a significant challenge for traditional polymer microlenses as they are typically not achromatic, paving the way for applications such as light field cameras and displays.

Source: Laser Net

Related Recommendations
  • Micro laser opens the door to chip size sensors

    The new device is a frequency comb - a special type of laser that can generate multiple wavelengths of light, each with a fixed frequency interval. On the spectrogram, it looks a bit like the teeth of a comb. In approximately a quarter century since their first development, these "cursor rulers" have completely transformed various high-precision measurements from timing to molecular detection. In ...

    2024-03-13
    See translation
  • Credo launches the world's first 800G DSP for linear receiving optical devices, targeting ultra large scale and artificial intelligence data centers

    Credo Technology Group Holding Ltd announced today the launch of the industry's first Dove 800 850G digital signal processor IC, which has been optimized for linear receiving optical devices and is also known as semi retiming linear optical devices in the industry. In LRO transceivers or active optical cables, only the transmission path from the electrical input to the output of the optical path i...

    2023-11-30
    See translation
  • Invest 13 million euros! Tongkuai opens its Southeast European headquarters in Hungary

    Recently, German company Tongkuai invested 13 million euros to open its headquarters in Southeast Europe in Hungary and jointly established a digital network demonstration factory in the Gothler Business Park. Its business focuses on machine tools for digital manufacturing and laser sales for batteries and other automotive components.Nicola Leibinger Kamm ü ller, CEO of Tongkuai, said, "It is...

    2023-09-16
    See translation
  • In situ bubble point measurement using spectroscopy

    Develop and research a new downhole bubble point pressure measurement technology suitable for black oil and volatile oil to enhance well analysis using spectroscopy.Representative fluid characteristics are required for a wide range of oilfield lifespans, such as the initial scale and production planning of reservoir hydrocarbon reserves. Fluid characteristics are usually obtained from laboratory s...

    2024-01-31
    See translation
  • Researchers prepare a new type of optical material with highly tunable refractive index

    It is reported that researchers from Beijing University of Chemical Technology and BOE Technology Group Co., Ltd. have collaborated to develop a transparent organic-inorganic composite optical adhesive material with highly tunable refractive index. The related research paper was recently published in Engineering.In the early days, glass was the main raw material for optical components. In recent y...

    2024-06-25
    See translation