English

Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

930
2023-08-21 10:55:33
See translation

Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.

Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manufacturer ACSL Ltd. This startup company raised $25 million earlier and plans to collaborate with a subsidiary of Toshiba to build a small experimental reactor in Japan in 2024. Professor Nakamura of the University of California, Santa Barbara said: Japan excels in manufacturing, while the United States excels in business and marketing. They hope to combine the advantages of both countries to build nuclear fusion reactors.

Currently, the Blue Laser Fusion program is commercializing nuclear fusion reactors, which can generate 1 gigawatt of electricity, equivalent to the output power of a regular nuclear power reactor. The construction cost is approximately $3 billion. Nuclear fusion technology aims to replicate the processes that occur on the sun, generating a large amount of energy in a controlled manner. Unlike nuclear fission, fusion does not produce radioactive waste, making it a promising energy source not only for Earth but also for space missions.

In order to initiate fusion ignition, researchers had to heat the fuel to over one million degrees Celsius, and they used various methods to accomplish this feat. However, the main challenge lies in maintaining the reaction and generating more energy than is consumed during the fusion process. In seeking to maintain fusion reactions, nuclear scientists use two main methods. The first involves magnetic confinement, in which a powerful magnet is used to maintain the fuel in the plasma state within a torus or donut shape. This method led to the creation of the Tokamak reactor and sparked great interest and investment from companies and venture capitalists; The second method is to use a laser and emit it rapidly and continuously. However, the disadvantage of this method is that large equipment cannot emit laser in continuous mode, while small equipment cannot generate sufficiently high output to ignite fusion fuel.

This is where blue laser fusion believes it can bring about change.

Nakamura was awarded the Nobel Prize for his groundbreaking work in developing blue light-emitting diodes. He believes that his company can utilize his semiconductor expertise to create a safe path for achieving nuclear fusion and transforming it into commercially viable technology. Due to the fact that Blue Laser Fusion Company is currently applying for a patent, the specific details of this method have not yet been disclosed. However, Nakamura is confident in the feasibility of building a fast shooting laser and envisions building a one megawatt nuclear reactor in Japan or the United States by the end of this century. Before reaching this milestone, the company plans to build a small experimental factory in Japan by the end of next year.

In the months since its establishment, Blue Laser Fusion has submitted more than ten patent applications in the United States and other countries. The company is still researching using boron instead of deuterium as fuel for fusion reactors. The company claims that boron as a fuel does not produce harmful neutrons, making it a more favorable choice. Blue Laser Fusion also collaborates with other Japanese companies, such as Toshiba Energy Systems and Solutions, a manufacturer of nuclear power plant turbine mechanisms, and Tokyo YUKI Holdings, which provides metal processing services. In December 2022, the Lawrence Livermore National Laboratory in the United States successfully demonstrated the use of lasers to generate more energy from nuclear fusion processes. Nevertheless, this achievement is only temporary, and to make blue laser nuclear fusion commercially viable, they must demonstrate long-term sustainability.

Source: OFweek


Related Recommendations
  • Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

    In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team...

    2023-08-31
    See translation
  • Laser Photonics Corporation acquires Control Micro Systems through asset purchase agreement

    Recently, Laser Photonics Corporation (LPC), a laser cleaning equipment developer listed on NASDAQ in the United States, announced that the company has signed a final agreement to acquire Control Micro Systems, Inc. (CMS) through an Asset Purchase Agreement (APA), but the financial details of the transaction have not yet been disclosed.At present, LPC's market value has shrunk by 70%, and it is de...

    2024-11-05
    See translation
  • Fiber coupled single photon source meets the requirements of quantum computing

    Due to the ability of quantum computers to crack many encryption methods used in current communication systems, the security of our current communication systems is facing threats. To address this crisis, scientists are developing quantum communication systems that utilize quantum mechanics to provide stronger security. A key component of these systems is the single photon source. In order for qua...

    10-27
    See translation
  • AMC Theatres launches advanced laser projection technology upgrades

    AMC Cinema has long been known as the largest cinema operator in the United States and the world, and has completed upgrades to almost all its venues in the broader Chicago area, including advanced laser projection technology.The technological reform of this chain of stores has made Chicago one of the first areas in AMC's footprint to benefit from CinIonic's cutting-edge projection technology.In e...

    2023-12-23
    See translation
  • A new method of generating laser without the need for mirrors

    A new laser generation method: a laser without a reflector. This study, conducted by a team of physicists from the University of Innsbruck and Harvard University, shows that quantum emitters with spacing smaller than the wavelength can achieve constructive synchronization of photon emission, resulting in bright and extremely narrow bandwidth beams, even without any optical resonant cavities.The ac...

    10-30
    See translation