English

Scientists at Peking University invent ultra-thin optical crystals for next-generation laser technology

6
2023-12-20 19:31:08
See translation

BEIJING, Dec. 19 (Xinhua) -- A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology.

This photo taken on Dec. 15, 2023 shows a Twist Boron Nitride (TBN) crystal placed on a piece of fused silica in Peking University, Beijing, capital of China. A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology. (Xinhua/Wei Mengjia)

 

Prof. Wang Enge from the School of Physics, Peking University, recently told Xinhua that the Twist Boron Nitride (TBN) made by the team, with a micron-level thickness, is the thinnest optical crystal currently known in the world. Compared with traditional crystals of the same thickness, its energy efficiency is raised by 100 to 10,000 times.

Wang, also an academician of the Chinese Academy of Sciences, said this achievement is an original innovation by China in the theory of optical crystals, and has created a new field of making optical crystals with two-dimensional thin-film materials of light elements.

The research findings were recently published in the journal Physical Review Letters.

Laser is one of the underlying technologies of the information society. Optical crystals can realize the functions of frequency conversion, parametric amplification and signal modulation, to name a few, and are the key parts of laser devices.

In the past 60 years, the research and development of optical crystals has been mainly guided by two phase-matching theories proposed by scientists in the United States.

However, due to the limitations of traditional theory models and material systems, the existing crystals have struggled to meet the future requirements for developing laser devices, such as miniaturization, high integration and functionalization. The development of new-generation laser technology needs breakthroughs in optical crystal theory and materials.

Wang Enge and Prof. Liu Kaihui, director of the Institute of Condensed Matter and Material Physics, School of Physics, Peking University, led the team to develop the twist-phase-matching theory, the third phase-matching theory based on the light-element material system.

"The laser generated by optical crystals can be viewed as a marching column of individuals. The twist mechanism can make everyone's direction and pace highly coordinated, greatly improving the energy conversion efficiency of the laser," explained Liu, who is also deputy director of the Interdisciplinary Institute of Light-Element Quantum Materials at the Beijing Huairou National Comprehensive Science Center.

The research has opened up a brand-new design model and material system, and realized the original innovation of the whole chain from basic optics theory to material science and technology, he said.

"The TBN crystal's thickness ranges from 1 to 10 microns. The thickness of optical crystals we had known before is mostly at the level of a millimeter or even centimeter," Liu added.

The TBN production technology is now applying for patents in the United States, Britain, Japan and other countries. The team has made a TBN laser prototype and is developing new-generation laser technology with enterprises.

"Optical crystal is the cornerstone of laser technology development, and the future of laser technology is determined by the design theory and production technology of optical crystals," Wang said.

With ultra-thin size, excellent integration potential and new functions, the TBN crystal is expected to achieve new application breakthroughs in quantum light sources, photonic chips, artificial intelligence and other fields in the future, according to Wang.

Liu Kaihui (front), director of the Institute of Condensed Matter and Material Physics, School of Physics, Peking University, and other members of a research team pose for a group photo in Peking University, Beijing, capital of China, Dec. 15, 2023. A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology. (Xinhua/Wei Mengjia)

Related Recommendations
  • Topological high-order harmonic spectroscopy in Communications Physics

    It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The rele...

    01-15
    See translation
  • Scientists have successfully miniaturized erbium-based erbium lasers on silicon nitride photonic chips

    Scientists from the Federal Institute of Technology in Lausanne (EPFL) have successfully miniaturized a powerful erbium-based erbium laser on silicon nitride photonic chips. Due to the large volume and difficulty in shrinking of typical erbium-based fiber lasers, this breakthrough is expected to make significant progress in optical communication and sensing technology.Since the 1960s, lasers have ...

    06-13
    See translation
  • An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

    The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.The specific technique...

    11-13
    See translation
  • Researchers use machine learning to optimize high-power laser experiments

    High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting syst...

    05-24
    See translation
  • Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

    Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the compre...

    02-03
    See translation