English

The world's first tunable wavelength blue semiconductor laser

1604
2024-11-23 11:06:56
See translation

Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Letters.

 



Figure 1 (a) Schematic diagram of a tunable single-mode laser with periodic slotted structure; (b) Cross sectional side view of slotted channel. Source: Taisei Kusui, Takumi Wada, Naritoshi Matsushita et al., "Continuous wave operation of InGaN tunable single mode laser with periodically slotted structure", Applied Physics Express (2024)

Researchers from Osaka University in Japan have previously demonstrated that a transverse quasi phase matching device made of aluminum nitride and a vertical microcavity wavelength conversion device containing SrB4O7 nonlinear optical crystals can generate far ultraviolet second harmonic (SHG) at wavelengths below 230 nm.

Usually, these advanced devices require large and expensive ultra short pulse lasers as excitation sources. However, achieving practical far ultraviolet light sources requires a blue semiconductor laser with a wavelength of approximately 460 nm.

Blue nitride semiconductor lasers were originally designed for blue light technology and have now expanded to the processing of metal materials such as copper and gold, with the potential to be applied in the next generation of laser display technology. However, the oscillation wavelengths of these blue light lasers are usually multiple.

Efficient wavelength conversion devices have a very narrow wavelength receiving bandwidth, making single wavelength lasers an ideal excitation source. In addition, precise wavelength control and adjustability are also essential. Although several single wavelength blue light lasers with coarse periodic structures have been reported, none of them can achieve tunable wavelength control.

Our tunable wavelength nitride semiconductor laser oscillates in the 405 nm wavelength band, but its structure can also be easily adjusted to 460 nm, "explained Kusui Taisei, the lead author of the research team." Combined with our new wavelength conversion device, this laser can create a compact and practical far ultraviolet light source suitable for continuous use in indoor environments, effectively sterilizing and disinfecting.

With its compact design and longer lifespan, this technology can be seamlessly integrated into household appliances such as refrigerators and air conditioners, providing healthier and safer living conditions for the home environment and bringing extensive benefits to public health.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Ring Laser Accuracy: Unprecedented Daily Measurement and Mapping of Earth's Rotation

    Scientists at the Technical University of Munich have made significant progress in measuring the Earth's rotation with unprecedented accuracy. Now, the ring laser from the Wettzell Geodetic Observatory can be used to capture data at a quality level unmatched anywhere in the world. These measurements are crucial for determining the position of the Earth in space, assisting climate research, and imp...

    2023-11-14
    See translation
  • NASA's laser reflector instrument helps to accurately locate Earth measurements

    The most famous use of GPS satellites is to help people understand their location, whether it is driving cars, ships or planes, or hiking in remote areas. Another important but little-known use is to distribute information to other Earth observation satellites to help them accurately locate measurements of our planet.NASA and several other federal agencies, including the US Space Force, the US Spa...

    2023-12-12
    See translation
  • Using laser welding technology to manufacture rotor shafts at the speed of light

    How can EMAG Laser Technology accelerate the production of critical powertrain components using its flagship product ELC 6 system?The rapid popularity of electric vehicles worldwide indicates that production planners must increase their efforts in producing key components of electric vehicles, particularly the rotor shaft. The importance of the rotor shaft as the core component for converting elec...

    2024-07-17
    See translation
  • The fiber laser system overcomes outdated issues through a PC based EtherCAT control platform

    In order to maintain relevance and success, companies with a long history must respect their past while not ignoring the future. This is the method adopted by Cincinnati Corporation (CI), a metal processing machinery manufacturer based in Harrison, Ohio, since its establishment in the late 1890s.The company is carefully considering technological changes. Incorrect selection of control hardware, ne...

    2024-05-25
    See translation
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    See translation