English

Researchers have created the first organic semiconductor laser to operate without the need for a separate light source

1096
2023-11-29 13:54:45
See translation

OLED is located at the top and is formed by an organic layer between the contacts. Apply voltage to it, inject charge and generate light, which in turn excites organic laser. Organic lasers contain a grating that can generate feedback and diffract some of the laser out of the structure.

Organic laser
Researchers have created the first organic semiconductor laser to operate without the need for a separate light source, which has been proven to be extremely challenging.
The new all electric laser is more compact than previous versions and operates in the visible light region of the electromagnetic spectrum, making it suitable for sensing, sensing, and spectroscopic applications.

A laser works by reflecting light back and forth, typically in an optical cavity containing a gain medium placed between two mirrors. When light is reflected between mirrors, the gain medium amplifies it, stimulating more light emission and producing coherent beams with a very narrow spectral range.

In 1992, the first organic laser was introduced. However, it uses a separate light source to drive its gain medium, which makes the design complex and limits its application. Since then, researchers have been trying to find a way to manufacture an organic laser that only uses an electric field to drive it.

Due to the work of Kou Yoshida and his colleagues at the University of St. Andrews in Scotland, this 30-year exploration has just reached its destination.

world record
There are two main strategies for designing electrically driven organic lasers. The first method is to place electrical contacts in an organic gain medium and inject charges through them. However, this is difficult to achieve because the injected charge absorbs light through the material's emission spectrum through the so-called triplet state. In addition, the contacts themselves also absorb light.
That's why Yoshida chose another approach: keeping charges, triplets, and contacts at a distance from the gain medium of the laser in space.

This is not an easy task either, as it means manufacturing a pulsed blue organic light-emitting diode with a light output intensity that should break world records, allowing it to trigger gain media and save additional light sources.

"In order to manufacture this device, we initially manufactured OLED and laser cavities separately, and then transferred OLED to the surface of the laser waveguide," Professor Ifor Samuel explained. The careful integration of these two parts is crucial for the gain medium to obtain strong electroluminescence generated inside OLED.

In order to complete the project, the team used diffraction gratings on thin film lasers to provide distributed feedback of laser emission in the thin film plane, while also diffracting the outgoing laser beam from the surface.

A slowly accelerating technology
Organic semiconductor devices are widely considered a "slow" technology because the charge mobility in organic materials is usually several orders of magnitude lower than that in crystalline silicon or III-V group semiconductors. But this innovation may start to change this perception and expand the scope of use of organic lasers.

As for the application, researchers claim that the new all electric organic semiconductor laser can be easily integrated into medical devices used in offices - various light based detection and spectroscopy devices for diagnosing diseases or monitoring symptoms.

Source: Laser Net

Related Recommendations
  • Korean POSTECH develops stretchable color adjustable photonic devices

    Liquid crystal elastomers are expected to be applied in displays, sensors, smart devices, and wearable devices.A team from POSTECH University in South Korea, led by Professor Su Seok Choi and Professor Seungmin Nam, has developed a new type of stretchable photonic device that can control the wavelength of light in various directions.This work was carried out by the Department of Electrical Enginee...

    2024-06-11
    See translation
  • Goethe, University of Central Florida research team showcases light and thin achromatic diffractive liquid crystal optical systems

    Headdisplay devices such as Apple Vision Pro, Meta Quest, and PICO are expected to completely change the way we perceive and interact with various digital information. By providing more direct interaction with digital information, MR has become one of the key driving forces for the metaverse, spatial computing, and digital twins, and has begun to be widely applied in fields such as intelligent tou...

    2023-09-26
    See translation
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    See translation
  • Laser assisted detection of past climate in ice cores

    Around the poles, ice accumulated over millions of years can reach depths of several kilometers. The undisturbed deep ice preserves information about the past. The air bags and particles trapped in the ice tell scientists what the atmosphere used to be like. This has aroused great interest among paleoclimatologists in glacier ice cores.By regularly sampling the ice core at its depth, they can reco...

    2023-11-01
    See translation
  • Reshaping the Sky: Laser Scanning Drones Innovate Data Collection

    Imagine soaring above the Earth, the world unfolds in patterns and reliefs, and the terrain whispers its secrets in the wind. Now imagine capturing these whispers and translating them into a digital language to draw our world map with unprecedented accuracy. Welcome to the forefront of laser scanning drones, a technological ballet in the sky where the fusion of flight and laser precision is reshap...

    2024-04-07
    See translation