English

Researchers have created the first organic semiconductor laser to operate without the need for a separate light source

872
2023-11-29 13:54:45
See translation

OLED is located at the top and is formed by an organic layer between the contacts. Apply voltage to it, inject charge and generate light, which in turn excites organic laser. Organic lasers contain a grating that can generate feedback and diffract some of the laser out of the structure.

Organic laser
Researchers have created the first organic semiconductor laser to operate without the need for a separate light source, which has been proven to be extremely challenging.
The new all electric laser is more compact than previous versions and operates in the visible light region of the electromagnetic spectrum, making it suitable for sensing, sensing, and spectroscopic applications.

A laser works by reflecting light back and forth, typically in an optical cavity containing a gain medium placed between two mirrors. When light is reflected between mirrors, the gain medium amplifies it, stimulating more light emission and producing coherent beams with a very narrow spectral range.

In 1992, the first organic laser was introduced. However, it uses a separate light source to drive its gain medium, which makes the design complex and limits its application. Since then, researchers have been trying to find a way to manufacture an organic laser that only uses an electric field to drive it.

Due to the work of Kou Yoshida and his colleagues at the University of St. Andrews in Scotland, this 30-year exploration has just reached its destination.

world record
There are two main strategies for designing electrically driven organic lasers. The first method is to place electrical contacts in an organic gain medium and inject charges through them. However, this is difficult to achieve because the injected charge absorbs light through the material's emission spectrum through the so-called triplet state. In addition, the contacts themselves also absorb light.
That's why Yoshida chose another approach: keeping charges, triplets, and contacts at a distance from the gain medium of the laser in space.

This is not an easy task either, as it means manufacturing a pulsed blue organic light-emitting diode with a light output intensity that should break world records, allowing it to trigger gain media and save additional light sources.

"In order to manufacture this device, we initially manufactured OLED and laser cavities separately, and then transferred OLED to the surface of the laser waveguide," Professor Ifor Samuel explained. The careful integration of these two parts is crucial for the gain medium to obtain strong electroluminescence generated inside OLED.

In order to complete the project, the team used diffraction gratings on thin film lasers to provide distributed feedback of laser emission in the thin film plane, while also diffracting the outgoing laser beam from the surface.

A slowly accelerating technology
Organic semiconductor devices are widely considered a "slow" technology because the charge mobility in organic materials is usually several orders of magnitude lower than that in crystalline silicon or III-V group semiconductors. But this innovation may start to change this perception and expand the scope of use of organic lasers.

As for the application, researchers claim that the new all electric organic semiconductor laser can be easily integrated into medical devices used in offices - various light based detection and spectroscopy devices for diagnosing diseases or monitoring symptoms.

Source: Laser Net

Related Recommendations
  • The research team establishes synthetic dimensional dynamics to manipulate light

    In the field of physics, the synthetic dimension has become one of the forefront of active research, providing a way to explore phenomena in high-dimensional space, surpassing our traditional 3D geometric space. This concept has attracted great attention, especially in the field of topological photonics, as it has the potential to unlock rich physics that traditional dimensions cannot reach.Resear...

    2024-03-20
    See translation
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    See translation
  • Commitment to achieving 100 times the speed of on-chip lasers

    Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.By operating these lasers...

    2023-11-13
    See translation
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    See translation
  • A research team from the University of Chicago in the United States has demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs)

    According to reports, a research team at the University of Chicago in the United States recently demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs), which may open up new applications for mid infrared light sources.Colloidal quantum dots are a type of semiconductor nanocrystal material that provides a promising approach for the synthesis of light sourc...

    2023-09-21
    See translation