English

How to choose between continuous and pulsed fiber lasers?

1203
2023-12-20 19:41:21
See translation

Fiber laser, with its simple structure, low cost, high electro-optical conversion efficiency, and good output effect, has been increasing in proportion in industrial lasers year by year. According to statistics, fiber lasers accounted for 52.7% of the industrial laser market in 2020.

According to the characteristics of the output beam, fiber lasers can be classified into two categories: continuous lasers and pulsed lasers. What are the technical differences between these two and what application scenarios are they suitable for? Here is a brief comparison of general applications.

As the name suggests, the laser output from a continuous fiber laser is continuous and the power is maintained at a fixed level, which is the rated power of the laser. The advantages of continuous fiber lasers during long-term stable operation.

The pulse laser is intermittent. Of course, this intermittent time is often very short, usually measured in milliseconds, microseconds, and even nanoseconds and picoseconds. Compared to continuous lasers, the strength of pulsed lasers is constantly changing, hence the concepts of "peaks" and "valleys".

Through pulse modulation, pulsed laser can be quickly released and reach maximum power at the peak position, but due to the presence of valleys, the average power is relatively low. It can be imagined that if the average power is the same, the peak power of pulsed laser can be much greater than that of continuous laser, achieving a higher energy density than continuous laser. This is reflected in metal processing, which has greater penetration ability. At the same time, it is also suitable for thermosensitive materials that cannot withstand sustained high heat, as well as some high reflectivity materials.

We can analyze the differences in application based on the output power characteristics of the two.

Continuous fiber lasers are typically suitable for:

·Large scale equipment processing, such as vehicle and ship machinery, cutting and processing of large steel plates, and other processing scenarios that are not sensitive to thermal effects but are more cost sensitive
·Used in the medical field for surgical cutting and coagulation, such as postoperative hemostasis
·Widely used in fiber optic communication systems for signal transmission and amplification, with high stability and low phase noise
·Used in the field of scientific research for applications such as spectral analysis, atomic physics experiments, and LiDAR, it can provide high-power and high beam quality laser output

Pulse fiber lasers are usually suitable for:

·Precision machining applications that cannot withstand strong thermal effects or brittle materials, such as processing electronic chips, ceramic glass, and medical biological parts
·The material has a high reflectivity and is prone to damage to the laser head itself due to reflection. For example, processing copper and aluminum materials
·Surface treatment or cleaning of the exterior of easily damaged substrates
·In processing scenarios that require high power and deep penetration in a short period of time, such as thick plate cutting, metal material drilling, etc,
·In situations where pulses are required as signal characteristics. For example, fiber optic communication and fiber optic sensors, etc
·Used in biomedical fields such as ophthalmic surgery, skin treatment, and tissue cutting, with high beam quality and modulation performance
·Manufacturing of metal parts with high precision and complex structures in 3D printing
·Advanced laser weapons, etc

Pulse fiber lasers and continuous fiber lasers have some differences in principle, technical characteristics, and applications, and are suitable for different situations. Pulse fiber lasers are suitable for applications that require high peak power and modulation performance, such as material processing and biomedical applications; Continuous fiber lasers are suitable for applications that require high stability and high beam quality, such as communication and scientific research. Choosing the appropriate type of fiber laser according to specific needs will help improve work efficiency and application quality.

Related Recommendations
  • Research has found that inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers

    According to research from Busan National University, inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers.The perovskite of interest is CsPbBr3, which must form "nanosheets" within the specific structure invented by the Busan team to obtain sufficient laser gain.It is not that the laser has been achieved, as the research project aims to cha...

    2024-01-04
    See translation
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    See translation
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    See translation
  • Laser-induced graphene sensor can diagnose diabetes through breath samples

    In the U.S., one in five of the 37 million adults who has diabetes is not aware of it (according to the U.S. CDC – Centers for Disease Control & Prevention). Current methods of diagnosing diabetes and prediabetes usually require a visit to a doctor’s office or lab work, both of which can be expensive and time-consuming. Now, diagnosing diabetes and prediabetes may be as simple as breathing. ...

    09-08
    See translation
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    See translation