English

How to choose between continuous and pulsed fiber lasers?

50
2023-12-20 19:41:21
See translation

Fiber laser, with its simple structure, low cost, high electro-optical conversion efficiency, and good output effect, has been increasing in proportion in industrial lasers year by year. According to statistics, fiber lasers accounted for 52.7% of the industrial laser market in 2020.

According to the characteristics of the output beam, fiber lasers can be classified into two categories: continuous lasers and pulsed lasers. What are the technical differences between these two and what application scenarios are they suitable for? Here is a brief comparison of general applications.

As the name suggests, the laser output from a continuous fiber laser is continuous and the power is maintained at a fixed level, which is the rated power of the laser. The advantages of continuous fiber lasers during long-term stable operation.

The pulse laser is intermittent. Of course, this intermittent time is often very short, usually measured in milliseconds, microseconds, and even nanoseconds and picoseconds. Compared to continuous lasers, the strength of pulsed lasers is constantly changing, hence the concepts of "peaks" and "valleys".

Through pulse modulation, pulsed laser can be quickly released and reach maximum power at the peak position, but due to the presence of valleys, the average power is relatively low. It can be imagined that if the average power is the same, the peak power of pulsed laser can be much greater than that of continuous laser, achieving a higher energy density than continuous laser. This is reflected in metal processing, which has greater penetration ability. At the same time, it is also suitable for thermosensitive materials that cannot withstand sustained high heat, as well as some high reflectivity materials.

We can analyze the differences in application based on the output power characteristics of the two.

Continuous fiber lasers are typically suitable for:

·Large scale equipment processing, such as vehicle and ship machinery, cutting and processing of large steel plates, and other processing scenarios that are not sensitive to thermal effects but are more cost sensitive
·Used in the medical field for surgical cutting and coagulation, such as postoperative hemostasis
·Widely used in fiber optic communication systems for signal transmission and amplification, with high stability and low phase noise
·Used in the field of scientific research for applications such as spectral analysis, atomic physics experiments, and LiDAR, it can provide high-power and high beam quality laser output

Pulse fiber lasers are usually suitable for:

·Precision machining applications that cannot withstand strong thermal effects or brittle materials, such as processing electronic chips, ceramic glass, and medical biological parts
·The material has a high reflectivity and is prone to damage to the laser head itself due to reflection. For example, processing copper and aluminum materials
·Surface treatment or cleaning of the exterior of easily damaged substrates
·In processing scenarios that require high power and deep penetration in a short period of time, such as thick plate cutting, metal material drilling, etc,
·In situations where pulses are required as signal characteristics. For example, fiber optic communication and fiber optic sensors, etc
·Used in biomedical fields such as ophthalmic surgery, skin treatment, and tissue cutting, with high beam quality and modulation performance
·Manufacturing of metal parts with high precision and complex structures in 3D printing
·Advanced laser weapons, etc

Pulse fiber lasers and continuous fiber lasers have some differences in principle, technical characteristics, and applications, and are suitable for different situations. Pulse fiber lasers are suitable for applications that require high peak power and modulation performance, such as material processing and biomedical applications; Continuous fiber lasers are suitable for applications that require high stability and high beam quality, such as communication and scientific research. Choosing the appropriate type of fiber laser according to specific needs will help improve work efficiency and application quality.

Related Recommendations
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    See translation
  • Blue Tile Lab, a company specializing in semiconductor backend process visual inspection and laser light sources, has received additional financing

    Recently, South Korean listed company APS has invested in Blue Tile Lab, a company engaged in semiconductor backend process visual inspection and laser light sources. Meanwhile, D&T, a subsidiary of APS specializing in the production of laser cutting equipment for secondary batteries, has also made its first investment in Blue Tile Lab.According to relevant information, APS made its first inve...

    2024-12-26
    See translation
  • SEMA 2023: Huali's Easy Level Floating Free Laser Fuel Level Transmitter

    Winning the SEMA Best Engineering New Product Award is not an easy task. Therefore, it said a lot about Huali's new non floating fuel transmitter bringing hardware home. The Easy Level fuel level sender is a brand new design that does not rely on traditional float arm settings, but uses a frikken laser beam to measure the fuel level in the tank.More precisely, Easy Level uses LiDAR technology to m...

    2023-11-03
    See translation
  • Breakthrough in optical quantum simulation using long-lived polariton droplets

    Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and rec...

    2024-03-27
    See translation
  • Scientists plan to build particle accelerator to power giant chip factory

    Scientists are exploring new ways to get around limitations on the lithography machines used to produce microchips. Researchers are using particle accelerators to create new laser sources that could lay the foundation for the future of semiconductor manufacturing.Plans are underway to build a particle accelerator with a circumference between 100 and 150 meters (328 and 492 feet), about the size of...

    2023-09-25
    See translation