English

Automated methods for background estimation in laser spectroscopy

1288
2023-11-24 14:35:28
See translation

A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.

When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the laser and the sample, pay attention to changes in laser energy, and the convergence of environmental noise, which helps to create different backgrounds in the collected spectra. All these obstacles will have a significant impact on the analysis.

In a recent study published in the Journal of Spectroscopy Part B: Atomic Spectroscopy, a research group from Jiangnan University introduced a new LIBS method aimed at automatically estimating and removing different spectral backgrounds. Under the leadership of Chen Hao from the School of Mechanical Engineering at Jiangnan University, researchers proposed a method that utilizes window functions, differential concepts, and piecewise cubic Hermite interpolation polynomials.

In this experiment, Chen and his team conducted a series of simulation experiments to evaluate background correction methods. They found that their proposed method performs better than existing techniques such as asymmetric least squares and modelless background correction. By utilizing window functions, Pchip, and differential concepts, the new method improves the ability to eliminate white noise and baseline distortion, achieving a better signal-to-noise ratio than previous methods.

The research team also found that their method improved the processing of background baseline jumps.
The researchers applied their method to seven different aluminum alloys and observed a correlation between spectral intensity and magnesium concentration.

It is worth noting that in the experiment of measuring magnesium concentration in aluminum alloys, the correlation coefficient between predicted concentration and actual concentration significantly improved after correction.

The coefficients for ALS and model free methods are 0.9913 and 0.9926, respectively, while the coefficients for this new method have decreased from the initial 0.9943 to 0.9154.

These findings not only validate the effectiveness of this automated method, but also pave the way for future research to improve the accuracy of LIBS spectral analysis.

Source: Laser Network

Related Recommendations
  • Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

    Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this bat...

    2023-09-25
    See translation
  • Improving chip level laser performance by suppressing noise

    For a long time, noise has been the main bottleneck restricting the performance improvement of microchip level Brillouin lasers. Now, researchers in Sydney have successfully overcome this challenge, making significant breakthroughs in the field of integrated photonics and developing an effective noise suppression method. This achievement makes it possible to generate extremely pure and ultra narro...

    12-01
    See translation
  • A new type of electrically driven organic semiconductor laser can be used in the fields of spectroscopy, metrology, and sensing

    According to a report from Maims Consulting, scientists at the University of St. Andrews in the UK recently stated that they have made a "significant breakthrough" in the decades of challenges in developing compact organic semiconductor laser technology.Firstly, an OLED with a world record light output was manufactured, and then integrated with a polymer laser structure. This new type of las...

    2023-10-07
    See translation
  • Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

    Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.This financing is led by the US Innovation Technology Fund (USIT) and involves hea...

    2024-07-18
    See translation
  • The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

    The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been...

    2023-10-28
    See translation