English

Automated methods for background estimation in laser spectroscopy

1315
2023-11-24 14:35:28
See translation

A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.

When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the laser and the sample, pay attention to changes in laser energy, and the convergence of environmental noise, which helps to create different backgrounds in the collected spectra. All these obstacles will have a significant impact on the analysis.

In a recent study published in the Journal of Spectroscopy Part B: Atomic Spectroscopy, a research group from Jiangnan University introduced a new LIBS method aimed at automatically estimating and removing different spectral backgrounds. Under the leadership of Chen Hao from the School of Mechanical Engineering at Jiangnan University, researchers proposed a method that utilizes window functions, differential concepts, and piecewise cubic Hermite interpolation polynomials.

In this experiment, Chen and his team conducted a series of simulation experiments to evaluate background correction methods. They found that their proposed method performs better than existing techniques such as asymmetric least squares and modelless background correction. By utilizing window functions, Pchip, and differential concepts, the new method improves the ability to eliminate white noise and baseline distortion, achieving a better signal-to-noise ratio than previous methods.

The research team also found that their method improved the processing of background baseline jumps.
The researchers applied their method to seven different aluminum alloys and observed a correlation between spectral intensity and magnesium concentration.

It is worth noting that in the experiment of measuring magnesium concentration in aluminum alloys, the correlation coefficient between predicted concentration and actual concentration significantly improved after correction.

The coefficients for ALS and model free methods are 0.9913 and 0.9926, respectively, while the coefficients for this new method have decreased from the initial 0.9943 to 0.9154.

These findings not only validate the effectiveness of this automated method, but also pave the way for future research to improve the accuracy of LIBS spectral analysis.

Source: Laser Network

Related Recommendations
  • The new method can maintain beam quality while significantly improving the power of fiber lasers

    The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated ne...

    2023-12-22
    See translation
  • Researchers have created an X Lidar lidar to help airports operate during volcanic eruptions

    Engineer and inventor Ezequiel Pawelko is one of the creators of X Lidar, a laser technology that can detect volcanic ash in the atmosphere, draw safe flight paths, and maintain airport operations during volcanic eruptions. Nowadays, he is engaged in other applications such as detecting space debris, monitoring natural resources and fisheries, preventing fires, and drawing radiation and wind maps ...

    2023-12-27
    See translation
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    See translation
  • Experimental verification of driving pressure enhancement and smoothing for hybrid driven inertial confinement fusion on a 100 kJ laser device

    The research teams from the Laser Fusion Research Center of the Chinese Academy of Engineering Physics, the Beijing Institute of Applied Physics and Computational Mathematics, Peking University, and Shenzhen University of Technology reported experimental verification of the driving pressure enhancement and smoothing of hybrid driven inertial confinement fusion on a 100 kJ laser equipment.The relev...

    2023-09-25
    See translation
  • AM Research has released its latest quarterly data and forecast report

    Recently, additive manufacturing research company AM Research released its latest quarterly data and forecast report, which deeply analyzes the latest developments in the global 3D printing market, covering multidimensional analysis of suppliers, printing technology, geographic location, and application areas.According to the report, the global 3D printing market once again demonstrates strong gro...

    2024-09-29
    See translation