English

The new method can maintain beam quality while significantly improving the power of fiber lasers

1196
2023-12-22 14:25:39
See translation

The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.

The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated new applications of multimode fibers, successfully increasing the power of fiber lasers by 3 to 9 times while maintaining beam quality, enabling them to focus on targets from a long distance.

This important research achievement was published in the journal Nature Communications, and the breakthrough stimulated Brillouin scattering (SBS) suppression and output focusing schematic diagram showcases its technical principles.

This innovative technology excites multiple modes in multimode fibers, significantly increasing the SBS threshold power. The core lies in generating diffraction limited light spots near the fiber output by modulating the relative phase of the fiber mode, and producing a focusing effect through lens collimation.

Researchers say that this new method will bring extremely high power output to fiber lasers, which will be widely used in fields such as defense industry, remote sensing applications, and gravitational wave detection, bringing unprecedented benefits for future development.

In response to the popularity of low-cost drones in modern battlefields, high-power fiber lasers are particularly important. It has the advantages of extremely low single launch cost and light speed operation, which can resist large-scale drone attacks, maintain the launch capability of military assets and vehicles, and ensure the execution of critical combat tasks.

This advanced technology not only has potential deterrent effects in the field of defense, but also aligns with the goals of defense strategic assessment and AUKUS Pillar 2.

Dr. Ori Henderson Sapir, a researcher at the Institute of Photonics and Advanced Sensing at the National University of Australia, stated that Australia has a long history of innovative fiber optic technology, which will put it in a world leading position in developing the next generation of high-power fiber lasers, not only limited to the defense field, but also contributing to new scientific discoveries.

Source: Laser Net

Related Recommendations
  • Research and investigate the thermal effects of 3D stacked photons and electronic chips

    Hybrid 3D integrated optical transceiver. (A, B) Test setup: Place the photon chip (PIC) on the circuit board (green), and glue the electronic chip (EIC) onto the top of the photon chip. (C) It is the cross-section of the EIC-PIC component with micro protrusions. (D) Display the mesh of the finite element model.The latest progress in artificial intelligence, more specifically, is the pressure plac...

    2023-12-09
    See translation
  • Edmund Optics acquisition son-x

    Recently, globally renowned optical component manufacturer Edmund Optics announced that the company has acquired ultrasonic assisted systems and high-precision optical manufacturer son-x.Edmund Optics, as a leader in optical technology solutions, has been serving various fields such as life sciences, biomedicine, industrial testing, semiconductors, and laser processing since its establishment in 1...

    01-22
    See translation
  • Jenoptik will invest millions of dollars to expand its optical manufacturing facilities

    A high-end manufacturing facility for semiconductor optics will be expanded at Jenoptik’s production campus in Jena, Germany. The photonics group will invest a sum in the low double-digit million euro range starting at the end of 2025.On the expanded production areas, Jenoptik will manufacture sophisticated, high-quality optical components that are mainly used in the semiconductor equipment indust...

    09-13
    See translation
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    See translation
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    See translation