English

Researchers have placed photon filters and modulators on standard chips for the first time

122
2023-12-26 14:19:44
See translation

Researchers at the University of Sydney combined photon filters and modulators on a single chip, enabling them to accurately detect signals on the broadband RF spectrum. This work brings photonic chips closer to one day, potentially replacing larger and more complex electronic RF chips in fiber optic networks.

The Sydney team utilized stimulated Brillouin scattering technology, which involves converting electric fields in certain insulators into pressure waves. In 2011, researchers reported that Brillouin scattering has the potential for high-resolution filtering and developed new manufacturing techniques that combine sulfur based Brillouin waveguides on silicon chips. In 2023, they managed to combine photon filters and modulators on the same type of chip. The team reported in a paper published in Nature Communications on November 20th that this combination resulted in a spectral resolution of 37 megahertz for the experimental chip, with a wider bandwidth than previous chips.

"The integration of the modulator with this active waveguide is a key breakthrough here," said David Marpaung, a nanophotonics researcher at the University of Twente in the Netherlands. Marpaung collaborated with the Sydney team ten years ago and now leads his own research team, which is adopting different methods to seek broadband, high-resolution photon radio sensitivity in tiny packages. Marpaung said that when someone achieves spectral resolution below 10 MHz in the 100 GHz frequency band, they will be able to replace bulky electronic RF chips on the market. Another advantage of this chip is that it can convert RF signals into optical signals for direct transmission through fiber optic networks. The winner of this competition will be able to enter the huge market of telecommunications providers and defense manufacturers, who need radio receivers that can reliably navigate complex RF environments.

"Sulfide compounds have a very strong Brillouin effect; this is good, but there is still a question of whether this is scalable... It is still considered a laboratory material.", Marpaung said that the Sydney research team must find a new method to install chalcogenide waveguides in 5-squaremm packages into standard manufactured silicon chips, which is not an easy task. In 2017, the team came up with how to combine chalcogenides onto silicon input/output rings, but it was not until this year that anyone managed this combination using standard chips.

Other research groups are studying different materials that may provide similar performance. For example, lithium niobate has better modulator characteristics than silicon, and Marpaung's ongoing peer review work indicates that lithium niobate can provide similar high-resolution filtering through Brillouin scattering. Another group led by Peter Laki of Yale University demonstrated last year that pure silicon waveguides and chip combinations can achieve filtering at 2.7 MHz in the 6 GHz frequency band. This work does not integrate modulators, but it suggests a potentially simpler manufacturing path involving fewer materials.

That is to say, the Sydney team's method may require better acoustic performance than silicon. Researchers have known that the Brillouin effect has a history of over 100 years, but in recent decades it has aroused people's interest. In the past, researchers used it to store information in light pulses before retransmitting it, which was a technique to avoid converting light into electrical energy and returning it again.

Of course, the dream of integrating photonic chips has many moving parts. Researchers in Sydney wrote that modulators manufactured by others are rapidly improving, which will also benefit their technology. Other advancements in related technologies may benefit other teams dedicated to integrating photonic chips. "If you solve integration, performance, and practicality issues, you will gain market recognition," said Marpaung.

Source: Laser Net

Related Recommendations
  • New research on achieving femtosecond laser machining of multi joint micromachines

    The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformat...

    2023-09-15
    See translation
  • The most advanced gas sensing laser technology will be exhibited at the upcoming CEM 2023 exhibition in Barcelona

    Nanoplus Nanosystems and Technologies GmbH is an ISO 9001:14001 certified supplier and one of the world's most famous laser manufacturers for gas sensing applications. The cornerstone of nanoplus's success is its unique patented method of manufacturing DFB laser sources. Nanoplus celebrates its 25th anniversary this year and separated from the University of Vilzburg in 1998.Among the outstanding i...

    2023-09-14
    See translation
  • Blue laser enterprise NUBURU obtains $5.5 million bridge financing

    Recently, NUBURU, a supplier of high-power and high brightness industrial blue laser technology in the United States, announced that it has reached bridge loan agreements ("bridge loans" or "bridge financing") with existing and new institutional investors.The principal of this bridge financing is $5.5 million, aimed at providing funding for the company until it obtains long-term credit financing,...

    2023-11-23
    See translation
  • Researchers use blurry light to 3D print high-quality optical components

    Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D p...

    2024-05-11
    See translation
  • Coherent's revenue for 2024 is $5.301 billion

    International laser giant Coherent's Q4 2024 sales exceeded expectations, reaching a historic high!Recently, Coherent released its highest quarterly sales data in history, mainly due to the demand for optical transceivers in artificial intelligence data center applications. For the three months ending December 31, the company's revenue was $1.43 billion, a year-on-year increase of 27% and a 6% inc...

    02-10
    See translation