English

Photovoltaic converters for power transmission systems

184
2023-12-29 14:42:15
See translation

Scientists from the University of Hahn in Spain and the University of Santiago de Compostela conducted research to determine the most suitable semiconductor materials for high-power light transmission in terrestrial and underwater environments.

HPOT, also known as laser power transfer, is a method of transmitting continuous power to a remote system using a monochromatic light source through an optical photovoltaic converter.
"In the coming year, our goal is to begin manufacturing OPCs based on indium gallium nitride and aluminum indium nitride as proof of concept, laying the foundation for exceeding the maximum efficiency reported so far," researcher Pablo Sanmart í n told PV Magazine.

The research team has identified potential targets for high-power optical wireless transmission, including remote mobile electronic devices such as small aircraft, drones, robots, satellites, as well as applications in underwater wireless power transmission, to improve the operational capabilities of autonomous underwater vehicles. However, they pointed out that the current system efficiency is limited to around 20%.

So far, gallium arsenide based OPCs have been used the most in HPOT research because they are considered mature and mature. However, the series resistance loss of this material is relatively high. Therefore, researchers have provided III-V InGaN and InAlN wide bandgap semiconductors as potential OPC materials, as they can match the optimal wavelength range of water.

Their modeling considered three types of composite mechanisms and validated them by comparing the results of GaAs with empirical results from scientific literature.

The researchers said, "The consistency between the obtained results is noteworthy, with a relative error maintained below 1.6% for all parameters and input power density.".

The team conducted a series of tests and found that the maximum efficiency of GaAs was 67.3% at 70 Wcm-2, InGaN was 70.6% at 75 Wcm-2, and InAlN was 70.3% at 150 Wcm-2. In the atmosphere, InGaN has the highest efficiency within 10 km, ranging from 70.5% to 65.3%, while InAlN has an efficiency of 70.3% to 65.1%. Under compression conditions, the GaAs results are relatively low, ranging from 67.3% to 62.4%.

When the medium is water, nitrides also exhibit better results. InGaN achieved an overall efficiency of 9.8% at 100 meters, while InAlN achieved a global efficiency of 8.6%. In contrast, the results of gallium arsenide are much worse, with an efficiency decrease to 2.4% at only 1 meter.

"This type of semiconductor cannot actually be used for underwater applications," scholars say. It is worth noting that the global efficiency of nitride based OPC still exceeds 46% at a distance of 20 meters.

The research team suggests that nitrides may generate approximately ten times more energy in the same amount of time. They exhibit over 63% high efficiency under auroral intensity of 1000 Wcm-2. In contrast, the highest achievable efficiency of GaAs at 100 Wcm-2 is approximately 67.3%.

They explained, "This enhancement is mainly attributed to the reduction of series resistance loss under strong illumination, from 28% to around 14%, which is due to the use of higher energy gap materials leading to a decrease in current density.".

They described their findings in their recent publication "Broadband Gap III-V Group Materials for Efficient Air and Underwater Optical Photovoltaic Power Transmission" in Solar Materials and Solar Cells.

"It is worth noting that the potential manufacturing of these devices is limited by potential technological manufacturing limitations that may arise during this process, as semiconductors are grown with sufficient quality to achieve the required doping levels or avoid lattice mismatch between layers," the researchers said. The feasibility of this process also depends on whether a preferred wavelength or similar wavelength is provided. In addition, monochromatic light sources should be able to provide such a strong power density and ensure that the beam has operable angular dispersion within the considered distance.

Source: Laser Net

Related Recommendations
  • Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

    It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was publi...

    2024-06-06
    See translation
  • Combined spectral lasers can unlock the potential of laser plasma accelerators

    A team of researchers in Berkeley Lab's Accelerator Technology and Applied Physics (ATAP) division has developed a new technique that combines fiber lasers of different wavelengths to generate ultra-short laser pulses. The research is in the journal Optics Letters.This work could advance the development of laser plasma accelerators (LPA), which have the potential to push the frontiers of high-en...

    2023-08-04
    See translation
  • The estimated output value of the LiDAR market in 2029 is expected to reach 5.352 billion US dollars

    Market research firm TrendForce Consulting released an industry insight report today, stating that currently LiDAR is mainly used in the automotive market for passenger cars and unmanned taxis, while in the industrial market it supports applications such as robotics, factory automation, and logistics.The report points out that driven by Level 3 and more advanced auto drive system system and logist...

    01-22
    See translation
  • WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

    The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including...

    2023-10-10
    See translation
  • The tesat optical terminal selected by Lockheed Martin satellite has passed ground testing

    Tesat Spacecom's laser communication terminal announced on October 26th that the company has passed critical ground testing deployed on NASA satellites.Tesat's SCOTT80 optical terminal was selected by Lockheed Martin, one of several manufacturers producing satellites for the Space Development Agency.SDA is an agency under the United States Space Force that plans to deploy a network of interconnect...

    2023-10-27
    See translation