English

Research has found that inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers

42
2024-01-04 14:19:29
See translation

According to research from Busan National University, inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers.
The perovskite of interest is CsPbBr3, which must form "nanosheets" within the specific structure invented by the Busan team to obtain sufficient laser gain.

It is not that the laser has been achieved, as the research project aims to characterize these nanosheets in terms of gain, temperature, and other parameters to provide data for designing future lasers.

According to the university, the team "achieved enhanced signal amplification in nanosheets through unique waveguide patterns, thereby enhancing gain and thermal stability.". These advances have had a wide-ranging impact on the applications of lasers, sensors, and solar cells, and may also affect areas such as environmental monitoring, industrial processes, and healthcare.

Under appropriate conditions, CsPbBr3 spontaneously forms atomic thick squares at around 150nm across the solution. Atomic level fine dust - quantum dots - are another form that can spontaneously form, but so far they have not provided sufficient gain for lasers.

Using micro imprinting lithography technology, waveguides were formed on a 20 x 20mm polyurethane acrylic substrate - a series of 20 μ M wide, 20 μ A long parallel channel with a depth of m, separated by 20 μ M thick wall.
These channels are filled with CsPbBr3 precursor solution and carefully wiped multiple times with a blade to evenly dose each channel.

The subsequent drying left a polycrystalline nanosheet at the bottom of each channel, which can be used for optical analysis - this is the expertise of the Busan Laboratory: the Department of Optoelectronics and Cogno Electromechanical Engineering.

"Perovskite nanosheets have properties that make them valuable for various applications," the university said. Their achievements have overcome the shortcomings of CsPbBr3 quantum dots, as their gain is essentially limited due to the short decay time of population inversion.

As part of the results, researchers created a new metric - "gain profile" - which describes the relationship between gain, spectral energy, and stripe length, and is "very convenient for analyzing local gain changes," according to the university.

The excitation and temperature dependence of the gain profile were measured, and the increase in gain and thermal stability of the polyurethane acrylate waveguide on the nanosheets was quantified.

"This enhancement is attributed to the improvement of optical constraints and heat dissipation, which is promoted by two-dimensional centroid constrained excitons and local states caused by uneven sheet thickness and defect states," said Pusan.

The collaboration between Busan National University and Oxford University in South Korea led to the publication of research results in the journal Optics: Science and Applications, titled "Enhancing perovskite nanosheets through patterned waveguides: excitation and temperature dependence of gain saturation.".

Source: Laser Net



Related Recommendations
  • NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

    Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejec...

    2023-10-31
    See translation
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    See translation
  • Scientists uncover the HPC potential of advances in communications and global laser light sources

    Thanks to the advent of high performance computing (HPC) for global laser light sources, the optical communications world is on the verge of major change. This revolutionary technology will redefine the way we transmit and receive data, bringing unprecedented speed and efficiency.Optical communication, which uses light to transmit information, has been a cornerstone of our digital world for deca...

    2023-08-04
    See translation
  • Breaking the limits of optical imaging by processing trillions of frames per second

    Pursuing higher speed is not just exclusive to athletes. Researchers can also achieve such feats through their findings. The research results of Professor Liang Jinyang and his team from the National Institute of Science (INRS) have recently been published in the journal Nature Communications.The team located at the INRS É nergie Mat é riaux T é l é communications resea...

    2024-04-08
    See translation
  • Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

    Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LED...

    2024-03-02
    See translation