English

Bohong has developed a new type of ultrafast laser for material processing

1084
2023-08-22 15:03:42
See translation

Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.

Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.

Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more efficient laser technology to the market.

She has just received a concept validation funding of 150000 euros from the European Research Council (ERC). Her project is called "Ultrafast 2.1 µ m Holmium Lasers for GHz Ablation" ("Giga2u") and is scheduled to run for 18 months.

Faster and more efficient
A standard femtosecond laser emits light pulses with a wavelength of one micrometer and a duration in the range of hundreds of femtoseconds. The energy of each pulse is high, and the system is expensive.

A new type of laser that is faster, more efficient, and at the same time cheaper may become a key technology in the market, "commented Saraceno, head of the Bohong Photonics and Ultrafast Laser Science Group.

Saraceno is currently developing a femtosecond laser with a working wavelength of 2.1 micrometers and a repetition rate of gigahertz.
Compared to shorter wavelength systems currently deployed in industry, this type of light source requires less energy and may be more reliable. They also promised to reduce costs and accelerate production speed. However, so far, these systems have only been used for research applications, such as spectroscopy.

Test market
The "Giga2u" concept validation grant aims to showcase the potential of this technology in industrial applications. This system is mainly used for processing glass and polymers, but it is also used for ablating water-based tissues. The latter may be useful for the future direction of laser surgery applications.

Researchers led by Saraceno hope to develop compact and stable laser prototypes and explore the market potential of this technology. In this process, the group also intends to lay the foundation for establishing a start-up company.

Source: Laser Network

Related Recommendations
  • Breaking the production record! Laser and lithium achieve ammonia production under environmental conditions for the first time

    The application of laser technology has revolutionized the methods of nitrogen fixation, providing a new method for synthesizing ammonia under environmental conditions. Recently, researchers have used commercial carbon dioxide lasers for the first time to disrupt the nitrogen nitrogen triple bond, providing a new green alternative to the Haber Bosch process.It is reported that the international re...

    2023-10-16
    See translation
  • The birth of multi photon 3D laser printing technology: printing millions of particles within 1 second

    Multi photon 3D laser printing technology, as a disruptive micro manufacturing technology, is facing two major challenges: speed and material compatibility. However, the latest research has made breakthrough progress, successfully increasing printing speed tenfold while maintaining excellent detail accuracy.In this remarkable study, scientists abandoned the traditional single beam printing method ...

    2024-04-19
    See translation
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    See translation
  • Thorlabs announces acquisition of Praevium Research

    On January 13, 2025, Thorlabs announced the acquisition of long-term partner Praevium Research, a developer of high-speed tunable VCSEL. In the future, Praevium will continue to operate as a department of Thorlabs under the name Praevium Research at its existing locations in California, while retaining its current leadership.It is understood that Christopher Burgner will serve as the general man...

    01-16
    See translation
  • Cambridge University researchers use lasers to "heat and strike" 3D printed steel

    According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousand...

    2023-11-03
    See translation