English

Vigo University School of Technology invents laser glass recycling system

64
2024-01-19 14:56:11
See translation

LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come from Slovakia, Germany, and France, as well as representatives from CSIC's Spain. The project, with a duration of three years and a budget of nearly 3 million euros, was selected in the public solicitation of EIC Pathfinder for Horizon Europe.

Professor Juan Pou explained that the current glass recycling process uses technology based on large-scale facilities, which centralize the process. This means that melting several tons of glass using inflexible processes requires high energy consumption, as well as the cost of transporting the glass to large recycling plants. EverGlass suggests developing a new technology based on the use of laser technology for on-site glass recycling. Researchers explain that through this approach, it is possible to produce customized or technological products with lower energy consumption, lower carbon dioxide emissions into the atmosphere, and lower transportation costs.

Researchers explain that users will send waste into new machines and choose the new products they want to obtain. "This will mean a shift from centralized recycling concepts to distributed recycling concepts, in which people will play a crucial role."
Everglass is one of the 53 projects selected by the European Innovation Commission.

Source: Laser Net

Related Recommendations
  • Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

    It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was publi...

    2024-06-06
    See translation
  • Chinese researchers have developed for the first time a room temperature HoYLF thin film laser

    In a study published in Optics Express, the research team led by Professor Fu Yuxi of the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed the room temperature holmium doped lithium yttrium fluoride (Ho: YLF) composite thin slice laser for the first time, which can achieve high efficiency and high-quality CW laser output.Laser devices operating...

    2 days ago
    See translation
  • Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

    The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solutio...

    2024-10-08
    See translation
  • Scientists at Peking University invent ultra-thin optical crystals for next-generation laser technology

    BEIJING, Dec. 19 (Xinhua) -- A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology.This photo taken on Dec. 15, 2023 shows a Twist Boron Nitride (TBN) crystal placed on a piece of fused silica in Peking University, Beijing, capital of China. A team of Chinese rese...

    2023-12-20
    See translation
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    See translation