English

Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

1171
2024-01-31 13:58:14
See translation

Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.

Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semiconductor lasers, diamond Raman lasers, and fiber lasers. Among these three types, fiber lasers are an excellent choice for generating 1.2 μm band lasers due to their simple structure, good beam quality, and flexible operation.

Researchers led by Professor Pu Zhou from the National University of Defense Technology in China are interested in high-power fiber lasers in the 1.2μm band. Most of the current high-power fiber lasers are ytterbium-doped fiber lasers in the 1 μm band, and the maximum output of the 1.2 μm band is limited to 10 watts.

Their research, titled "High-Power Tunable Raman Fiber Laser in the 1.2 μm Band," was published in Frontiers in Optoelectronics.

Their idea is to use the stimulated Raman scattering effect in passive optical fibers to obtain high-power laser generation in the 1.2μm band. The stimulated Raman scattering effect is a third-order nonlinear effect that converts photons to longer wavelengths.

By exploiting the stimulated Raman scattering effect in phosphorus-doped optical fiber, the researchers converted the high-power ytterbium-doped fiber in the 1 μm band to the 1.2 μm band. A Raman signal with a power of 735.8 W was obtained at 1252.7 nm, which is the highest output power ever reported for a 1.2 μm band fiber laser.

Source: Laser Network


Related Recommendations
  • Shanghai Institute of Optics and Fine Mechanics has achieved beam splitting vortex control and interference detection for the first time in the 46.9nm wavelength band

    Recently, Associate Researcher Zhang Junyong from the High Power Laser Physics Joint Laboratory of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, together with Professor Zhao Yongpeng's research group from Harbin Institute of Technology and Professor Zhan Qiwen's research group from Shanghai University of Technology, completed the experimental verification of 46....

    2024-10-17
    See translation
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

    Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer tes...

    2024-07-23
    See translation
  • Fraunhofer ISE develops a faster laser system for wafer processing

    By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform lase...

    2023-12-23
    See translation
  • Japanese and Australian teams use lasers to search for space debris the size of peanuts

    It is reported that Japanese startup EX Fusion will soon reach an agreement with Australian space contractor Electric Optical Systems to conduct on-site testing of technology for tracking small space debris orbiting Earth.Image source: LeolabsEX Fusion, headquartered in Osaka, specializes in the laser business with the goal of achieving commercial laser fusion reactors. So far, nuclear fusion rese...

    2023-10-10
    See translation
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    See translation