English

IPG launches dual beam fiber laser for additive manufacturing applications

161
2024-11-25 12:00:10
See translation

Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.
The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.


Based on its profound expertise in the field of high-power lasers, IPG has launched two new dual beam rack mounted lasers:
YLR-1000/3000-AMB series laser with 1kW core and 3kW ring combination;
YLR-2000/2000-AMB series laser with 2kW core and 2kW ring combination.
The all-new YLR-AMB series laser is specially designed for the additive manufacturing industry and has the following unique advantages:
Production efficiency leap: YLR-1000/3000-AMB laser has a construction rate of up to 324 cm ³/h and a density exceeding 99.9% in materials such as Ti-6Al-4V.


(Image source: IPG Photonics)

Multi functional processing capability: Combining single-mode and multi-mode outputs, the total power can reach 4 kilowatts, providing diverse processing options.
Heat distribution optimization: By independently adjusting the core and ring beams, more optimized heat distribution is achieved, promoting fast and high-quality construction.
Compact design: Adopting a slim 2U 19 inch (482.6mm) rack mounted design, it is not only easy to integrate, but also greatly saves space.
These innovative achievements have undergone rigorous testing by multiple top additive manufacturing OEM manufacturers, and preliminary results show excellent performance, significantly reduced costs, and greatly improved material utilization.


Trevor Ness, Senior Vice President of Global Sales and Business Development at IPG Photonics, emphasized that "YLR-AMB lasers have completely revolutionized the field of additive manufacturing. With high power, precise control, and application specific optimization, we help manufacturers reshape new standards for productivity and cost efficiency
The YLR-AMB series lasers perform well in high-performance applications such as aerospace components, medical equipment, and custom tools. Its key highlights include:
Material performance optimization: Specifically optimized for alloys such as Ti-6Al-4V (α - β titanium alloy) and CuCr1Zr (copper chromium zirconium).
Dynamic layer adjustment: Ensure the implementation of complex geometric shapes and perfect drape effects.


(Image source: IPG Photonics)

 


Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    See translation
  • GOLDEN laser die-cutting machine will be exhibited at UPAKEXPO 2024

    At the UpakExpo 2024 exhibition to be held in Moscow at the end of January, Chinese company Golden Laser will showcase for the first time two laser die-cutting machines focused on the printing, labeling, and packaging markets in Russia.The Golden Laser LC350 is a web machine designed to handle labels printed on digital and flexographic printing machines. It can cut, die cut, and kiss cut paper, pl...

    2024-01-12
    See translation
  • Microscopic Marvel photon devices have the potential to completely change the way physics and lasers are processed

    Researchers at Rensselaer Institute of Technology have developed a device that operates at room temperature, which is the first topological quantum simulator to operate under strong light matter interaction mechanisms, making high-tech research easier in cutting-edge ways.Researchers at Rensselaer Institute of Technology have developed a device no larger than human hair, which will enable physicis...

    2024-06-04
    See translation
  • This perovskite solar cell laser equipment company has received another round of financing

    Recently, Lecheng Intelligent Technology (Suzhou) Co., Ltd. (hereinafter referred to as "Lecheng Intelligent") completed a strategic financing round of tens of millions of yuan, which is exclusively invested by Dongfang Fenghai Capital. The financing funds will mainly be used for technology research and development, laboratory construction, and talent recruitment.This is the second round of financ...

    2023-10-10
    See translation
  • The new progress of deep ultraviolet laser technology is expected to change countless applications in science and industry

    Researchers have developed a 60 milliwatt solid-state DUV laser with a wavelength of 193 nanometers using LBO crystals, setting a new benchmark for efficiency values.In the fields of science and technology, utilizing coherent light sources in deep ultraviolet (DUV) regions is of great significance for various applications such as lithography, defect detection, metrology, and spectroscopy. Traditio...

    2024-04-10
    See translation