English

Researchers develop innovative quantum dot lasers for advanced frequency combs

930
2023-11-17 14:36:44
See translation

Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for silicon photonic integrated circuits in data centers and various other applications.

The UCSB research team led by John Bowers designed the QD platform, which can manufacture devices with bandwidth comparable to the most advanced QD mode-locked lasers currently available. The AM and FM pulse widths generated by UCSB devices meet the latest standards for QD mode-locked lasers.

The significance of this development lies in the potential enhancement of optical frequency combs, which have been proven to have immeasurable value in remote sensing, spectroscopy, and optical communication. However, traditional amplitude modulation frequency combs pose challenges to dense wavelength division multiplexing systems due to their high instantaneous power, resulting in strong thermal nonlinearity. In order to effectively generate a wide and efficient optical frequency comb, precise engineering design of the group velocity dispersion of the waveguide is necessary.

UCSB researchers solved this challenge by utilizing collision pulse structures, which enable QD mode-locked lasers to have impressive fast repetition rates of 60 GHz. This helps to support DWDM systems while minimizing channel crosstalk during data transmission. In addition, the laser cavity is designed with a length of 1.35 mm and a width of 2.6 μ The laser cavity of m achieves a 3 dB optical bandwidth of up to 2.2 THz in the telecommunications O-band, with an impressive electro-optical insertion and removal efficiency of over 12%.

In order to generate FM combs, in addition to the group velocity dispersion of the waveguide, the nonlinear characteristics of the laser active region also play a crucial role. The QD mode-locked laser exhibits an astonishing -5 dB four-wave mixing efficiency, which helps generate FM combs efficiently and robustly. It is fascinating that the gain dynamics of quantum dot lasers determine the mechanism behind the formation of FM and AM combs. The formation of AM combs requires slow gain through low injection current, while FM combs rely on fast gain to generate significant Kerr nonlinearity and four-wave mixing.

In an equally eye-catching discovery, researchers have demonstrated the ability to effectively design Kerr nonlinearity in quantum dot lasers, expanding the FM comb bandwidth without the need for GVD engineering. By applying voltage to the saturable absorber portion of the laser, this method not only improves the performance of the FM comb, but also simplifies the manufacturing process. Compared with traditional quantum well diode lasers, quantum lasers have strong Kerr nonlinearity and four-wave mixing capabilities, making them more suitable for generating FM combs in the optical communication frequency band.

Compared with FM combs produced by other integrated optical frequency comb technologies, the FM combs produced by this new technology have better size, weight, power consumption, and cost characteristics, which demonstrate the strength of QD lasers. The wide range of characteristics of FM combs makes them very suitable for high-capacity optical communication systems, and their performance is superior to traditional AM combs.

Excitingly, the technology developed by UCSB researchers is also compatible with complementary metal oxide semiconductor technology, further highlighting its potential for practical implementation.

This groundbreaking study has been published in "Light: Science and Applications", a renowned scientific journal specializing in the field of optics.

Source: Laser Network

Related Recommendations
  • Laser technology helps wafer bonding, creating a cutting-edge laser system production factory

    Recently, Coherent LaserSystems, the global leader in laser and photon solutions, and Fraunhofer IZM-ASSID jointly announced that they have reached a strategic partnership to develop and optimize alternative bonding and debonding technologies for advanced CMOS and heterogeneous integrated applications (including quantum computing), in which laser technology plays a crucial role. It is reported t...

    2024-06-19
    See translation
  • Nat. Commun.: Two color orthogonal polarized organic light-emitting diode

    In recent years, linearly polarized organic light-emitting diodes have greatly enriched the application scenarios of polarization optics and optoelectronics industries. The low-cost and large-area preparation of linearly polarized organic light-emitting diodes with high polarization, strong directional emission, narrow bandwidth, and multi-color adjustability is an important challenge in the curre...

    2024-02-29
    See translation
  • A US research team has developed a new type of photonic memory computing device

    Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integ...

    2024-10-24
    See translation
  • Ruifeng high power ultraviolet laser will become an indispensable tool in the production of thin film solar cells in the future

    With the rise of clean energy and the enhancement of environmental awareness, thin film solar cells are gradually replacing traditional silicon-based solar cells as an efficient energy conversion device.However, to achieve efficient solar cell conversion rates, the key is to ensure that thin film solar cells have clear edges and maximize light absorption. In this regard, the unique advantages of h...

    2023-09-08
    See translation
  • Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

    Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation...

    2023-09-07
    See translation