English

Progress makes laser based imaging simpler and more three-dimensional

109
2023-12-05 14:31:19
See translation

a. b. Schematic diagram of PACTER system calibration and imaging program. BT, beam trap; DAQ, data acquisition unit; HWP, half wave plate; PBS, polarization beam splitter; ER, traverse the relay. The difference between the two modes is highlighted by a black dashed box.

c. Schematic diagram of a single component ultrasonic transducer manufactured on ER.

d. The ultrasound transducer detected 1D PATTER signals 0, t1, and tN. e at time instance t, and reconstructed a 4D image of the human palm blood vessel based on the signals in d.

Sometimes, scientific progress appears in the form of discovering new things. At other times, progress boils down to doing better, faster, or easier. The new research by Professor Li Hong Wang, a professor of medical and electrical engineering at the California Institute of Technology and Professor Bren Wang's laboratory, is the latter.

In a paper published in the journal Nature Biomedical Engineering titled "Ultrafast longitudinal imaging of biomedical via single shot volumetric photoacoustic tomography with a single element detector," Wang and postdoctoral scholar Yide Zhang demonstrated how they simplified and improved the imaging technology they first announced in 2020.

This technology is a photoacoustic imaging technique called PATER, which is the expertise of the Wang team.
In photoacoustic imaging, the laser is pulsed into the tissue, where it is absorbed by the molecules of the tissue, causing them to vibrate. Each vibrating molecule serves as a source of ultrasound and can be used to image internal structures in a manner similar to ultrasound imaging.

However, photoacoustic imaging is technically challenging as it can generate all imaging information in a short period of time. In order to capture this information, early versions of Wang's photoacoustic imaging technology required pressing arrays of hundreds of sensors onto the surface of the imaged tissue, making the technology complex and expensive.

Wang and Zhang reduced the required number of transducers by using a device called a traversal relay, which slows down the speed of information flowing into the transducers. As explained in the previous story about PATER: "In computing, there are two main ways to transmit data: serial and parallel. In serial transmission, data is sent in a single stream form through a communication channel. In parallel transmission, multiple communication channels are used to send multiple data simultaneously.".

Source: Laser Net

Related Recommendations
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    See translation
  • Veeco Instruments wins IBM big order

    On August 14th local time, Veeco Instruments, a well-known American laser annealing manufacturer, announced an important cooperation with technology giant IBM. It is reported that IBM has selected Veeco Instruments' WaferStorm wet processing system as support for its advanced packaging applications, and the two parties have signed a joint development agreement to explore the potential of utilizi...

    2024-08-23
    See translation
  • Aston University is the first to adopt innovative laser detection technology using MEMS mirrors

    The School of Engineering and Physical Sciences at Aston University, located in Birmingham, UK, is at the forefront of exploring innovative laser detection methods and turbulence simulation. The plan revolves around the utilization of micro electromechanical mirrors, which have had a significant impact on various scientific fields over the past two decades.MEMS reflectors have gained widespread re...

    2024-03-07
    See translation
  • Northeastern University of Japan: Breakthrough Laser Technology for Nanoscale Laser Processing

    In the fields of optics and micro/nano processing, precise manipulation of lasers to meet the growing demand for miniaturization is an important challenge in driving the development of modern electronic and biomedical equipment. Recently, researchers from Tohoku University in Japan successfully demonstrated the use of interference technology to enhance the longitudinal electric field of radially p...

    2024-04-12
    See translation
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    See translation