English

The team has developed a method for integrating an electro-optic modulator device on the end face of a single-mode fiber optic jumper

76
2023-08-24 11:46:55
See translation

Electro optical modulators (EOMs) are the main components in optical communication networks, which can control the amplitude, phase, and polarization of light through external electrical signals. 

In order to achieve ultra compact and high-performance EOM, most of today's research focuses on on-chip devices that combine semiconductor technology with state-of-the-art tunable materials. However, integrated EOM, as an independent on-chip component, is usually separated from the light source.

Therefore, additional interfaces for coupling light from the light source to the waveguide of the on-chip device are essential. Although state-of-the-art coupling schemes, including edge coupling and grating coupling, have been adopted, they are still affected by limited integration density and narrowband operation, respectively.

In addition, both coupling schemes require ultra precise alignment and complex packaging, making on-chip devices expensive for customers. Therefore, there is a need for an EOM device that avoids coupling complexity and further reduces coupling losses.

In a new paper published in the journal Optics: Science and Applications, a group of scientists developed a method of directly integrating EOM devices onto the end face of single-mode fiber jumpers, using standard fiber interfaces to connect EOM devices to light sources.

Using the standard nanomachining method developed in our previous work, the EOM module can be directly integrated on the tip of a single-mode fiber, thus avoiding coupling processing in the essence of superfiber EOM, "said Professor Qiu Min.

This plasma superfiber EOM has a clear plasma organic mixing configuration. Benefiting from ultra-thin and high-quality plasma metasurfaces, nano processing friendly and efficient EO polymers, the spectral amplitude and quality factor of light are well controlled to improve the resonance sensitivity of EO modulation.

More interestingly, by properly designing plasma mode, resonant waveguide mode, and Fabry Perot mode, tunable dual band operation can be achieved in the telecommunications O and S bands, "added co lead authors Lei Zhang and Xinyu Sun.

The microfiber EOM is further driven by DC/AC signals. The modulation speed of the metafiber EOM can reach up to 1000 MHz, with a bias voltage of ± 9 V, which is the best performance of the lumped fiber integrated EOM.

This type of ultra fiber EOM provides a new perspective for designing ultra compact and high-performance EO devices, which are suitable for applications that require compact configurations, high integration capabilities, and low coupling losses, such as active mode-locked fiber lasers and tunable broadband fiber polarizers. This work also provides a way for the "plug and play" implementation of optoelectronic devices and ultra compact "all fiber" optical systems in communication, imaging, sensing, and other fields Professor Wang Jiyong added.

Source: Laser Network

Related Recommendations
  • The team of researcher Wei Chaoyang of Shanghai Optical Machinery Institute has realized the manufacture of fused quartz components with high resistance to UV laser damage

    Recently, a team led by researcher Zhaoyang Wei of the Precision Optics Manufacturing and Testing Center of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has realized the manufacture of fused quartz components with high resistance to UV laser damage based on the defect characterization and removal process of CO2 laser. The research is published in Light: Advance...

    2023-09-11
    See translation
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    See translation
  • Lameditech of South Korea was listed on the KOSDAQ exchange on the 17th

    On June 11, 2024, Korean laser medical equipment manufacturer Lameditech successfully completed its initial public offering and was listed on the KOSDAQ exchange on the 17th.Last month, its public offering price was fixed at 16000 Korean won. In this public offering, Lameditech issued a total of 1298000 shares, raising approximately 20.8 billion Korean won. Since Lameditech's debut on KOSDAQ, as o...

    2024-06-26
    See translation
  • Observation of nanoscale behavior of light driven polymers using combination microscopy technology

    Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical ...

    2024-03-12
    See translation
  • BLT launches a new BLT-S800 metal PBF 3D printer equipped with 20 lasers

    Bright Laser Technologies (BLT), a global leader in additive manufacturing headquartered in China, has launched a new BLT-S800 metal 3D printer with a super large construction volume (800 mm x 800 mm x 600 mm) and a 20 fiber laser configuration, which can shorten part delivery time and achieve rapid customer manufacturing.The BLT-S800 system supports titanium alloy, aluminum alloy, high-temperatur...

    2023-10-19
    See translation