English

Researchers have captured the strange behavior of laser induced gold

67
2024-02-17 11:20:40
See translation

A new study conducted by the US Department of Energy's SLAC National Accelerator Laboratory has revealed the strange behavior of gold when impacted by high-energy laser pulses.

When certain materials are subjected to strong laser excitation, they will quickly disintegrate. But gold is exactly the opposite: it becomes more resilient and resilient. This is because the way gold atoms vibrate together - their phonon behavior - has changed.

"Our research findings challenge previous understanding, indicating that under certain conditions, metals like gold become stronger rather than melting when subjected to strong laser pulses," said Adrien Descamps, a researcher at Queen's University of Belfast who led the study during his graduate studies at Stanford University and SLAC. This is in stark contrast to semiconductors, which become unstable and melt.

For decades, simulations have hinted at the possibility of this phenomenon, known as phonon hardening. Now, using SLAC's linear accelerator coherent light source, researchers have finally brought this phonon hardening to people's attention. The team has published their research results in Scientific Progress.

"It's a fascinating journey to see our theoretical predictions validated in experiments," said collaborator Emma McBride, a researcher at Queen's University Belfast and former Panofsky researcher at SLAC's high-energy density science department. The accuracy of measuring these phenomena on LCLS is astonishing, opening up new possibilities for future research in materials science.

In their experiment, the team aimed an optical laser pulse at a thin gold film in an extreme conditions material laboratory chamber, and then used ultrafast X-ray pulses from LCLS to capture atomic level snapshots of material reactions. This high-resolution glimpse of the world of gold atoms allows researchers to observe subtle changes and capture the moment when phonon energy increases, providing specific evidence of phonon hardening.

"We use X-ray diffraction in LCLS to measure the structural response of gold to laser excitation," McBride said. This reveals insights into the arrangement and stability of atoms under extreme conditions.

Researchers have found that when gold absorbs extremely high-energy optical laser pulses, the force that holds its atoms together becomes stronger. This change causes atoms to vibrate faster, which can alter the reaction of gold to heat and may even affect its melting temperature.

"Looking ahead, we are pleased to apply these findings to more practical applications, such as laser processing and material manufacturing, where understanding these processes at the atomic level may lead to improvements in technology and materials," Descamps said. We also plan to conduct more experiments and hope to explore these phenomena on a wider range of materials. For our field, this is an exciting moment, and we look forward to seeing where these findings will take us.

Source: Laser Net

Related Recommendations
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    See translation
  • Important Discovery in Aluminum Alloy Laser Coaxial Fusion Additive Manufacturing

    Aluminum alloy has unique advantages such as lightweight, high strength, and excellent corrosion resistance, and is highly favored in the aerospace manufacturing field. Laser Coaxial Fusion Additive Manufacturing (LCWAM) adopts beam shaping technology, which uses wire as the deposition material to melt and stack layer by layer. Compared to traditional side axis wire feeding technology, laser coaxi...

    2024-04-29
    See translation
  • Fulu and Longview begin design work on laser melting devices

    Longview Fusion Energy Systems and Fluor have taken another step towards commercialization of laser fusion power plants.According to the memorandum of understanding signed by the two companies, Fulu will design the factory for Longview Fusion Energy Systems. The two companies collaborated and signed a memorandum of understanding in 2023 to leverage Fulu's experience in developing and constructing ...

    2024-03-13
    See translation
  • Making Infrared Light Visible: New Equipment Utilizes 2D Materials to Convert Infrared Light

    Infrared imaging and sensing technology can be used in various fields, from astronomy to chemistry. For example, when infrared light passes through a gas, sensing changes in light can help scientists identify specific properties of the gas. The use of visible light may not always achieve this sensing.However, existing infrared sensors are bulky and inefficient. In addition, due to the use of infra...

    2024-06-24
    See translation
  • Acta: Revealing the mechanism of defect formation in additive manufacturing

    Main author: Yanming Zhang, Wentao Yana*The first unit: National University of SingaporePublished Journal: Acta MaterialiaResearch backgroundIndustry pain point: Although laser powder bed melting (LPBF) technology can manufacture complex components, the lack of consistent product quality is still the core bottleneck restricting its industrial application. Research has shown that up to 35% of proce...

    2 days ago
    See translation