English

Researchers have captured the strange behavior of laser induced gold

175
2024-02-17 11:20:40
See translation

A new study conducted by the US Department of Energy's SLAC National Accelerator Laboratory has revealed the strange behavior of gold when impacted by high-energy laser pulses.

When certain materials are subjected to strong laser excitation, they will quickly disintegrate. But gold is exactly the opposite: it becomes more resilient and resilient. This is because the way gold atoms vibrate together - their phonon behavior - has changed.

"Our research findings challenge previous understanding, indicating that under certain conditions, metals like gold become stronger rather than melting when subjected to strong laser pulses," said Adrien Descamps, a researcher at Queen's University of Belfast who led the study during his graduate studies at Stanford University and SLAC. This is in stark contrast to semiconductors, which become unstable and melt.

For decades, simulations have hinted at the possibility of this phenomenon, known as phonon hardening. Now, using SLAC's linear accelerator coherent light source, researchers have finally brought this phonon hardening to people's attention. The team has published their research results in Scientific Progress.

"It's a fascinating journey to see our theoretical predictions validated in experiments," said collaborator Emma McBride, a researcher at Queen's University Belfast and former Panofsky researcher at SLAC's high-energy density science department. The accuracy of measuring these phenomena on LCLS is astonishing, opening up new possibilities for future research in materials science.

In their experiment, the team aimed an optical laser pulse at a thin gold film in an extreme conditions material laboratory chamber, and then used ultrafast X-ray pulses from LCLS to capture atomic level snapshots of material reactions. This high-resolution glimpse of the world of gold atoms allows researchers to observe subtle changes and capture the moment when phonon energy increases, providing specific evidence of phonon hardening.

"We use X-ray diffraction in LCLS to measure the structural response of gold to laser excitation," McBride said. This reveals insights into the arrangement and stability of atoms under extreme conditions.

Researchers have found that when gold absorbs extremely high-energy optical laser pulses, the force that holds its atoms together becomes stronger. This change causes atoms to vibrate faster, which can alter the reaction of gold to heat and may even affect its melting temperature.

"Looking ahead, we are pleased to apply these findings to more practical applications, such as laser processing and material manufacturing, where understanding these processes at the atomic level may lead to improvements in technology and materials," Descamps said. We also plan to conduct more experiments and hope to explore these phenomena on a wider range of materials. For our field, this is an exciting moment, and we look forward to seeing where these findings will take us.

Source: Laser Net

Related Recommendations
  • Laser technology reveals hidden gases in complex mixtures

    Laser Network reported on January 11th that modern equipment has been fine tuned to detect highly specific gases, including trace gases found in the atmosphere, gases present in combustion exhaust emissions, and gases used in technology plasma applications.They achieve this by calculating the percentage of light at a certain wavelength that is absorbed or attenuated by the sample. This way, the co...

    2024-01-11
    See translation
  • Polyart Launches New Generation Polyart Laser Synthetic Paper

    Polyart has launched a new generation of Polyart laser printers, designed specifically for dry toner printing technology, with a completely improved coating formula and many exciting new advantages. These include reducing nationalism, moisture resistance, and better paper touch.Say hello to the good paper jogging on the printer output. More importantly, our new formula provides better scratch resi...

    2023-11-16
    See translation
  • Research progress and prospects of CFRP laser surface cleaning

    Researchers from Materials Science at Harbin Institute of Technology, Zhengzhou Research Institute at Harbin Institute of Technology, and Key Laboratory of Microsystems and Microstructure Manufacturing at Harbin Institute of Technology, Ministry of Education, reviewed and reported on the research progress of laser surface cleaning of carbon fiber reinforced polymer composites (CFRP). The relevant ...

    03-06
    See translation
  • Improvements in LiDAR technology will help NASA scientists and explorers perform remote sensing and measurement functions

    Improvements in LiDAR technology will assist NASA scientists and explorers in remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance, and navigation.Like sonar that uses light instead of sound, LiDAR technology is increasingly helping NASA scientists and explorers with remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance...

    2023-10-26
    See translation
  • Artificial intelligence accelerates the process design of 3D printing of metal alloys

    In order to successfully 3D print metal parts to meet the strict specifications required by many industries, it is necessary to optimize process parameters, including printing speed, laser power, and layer thickness of deposited materials.However, in order to develop additive manufacturing process diagrams that ensure these optimal results, researchers have to rely on traditional methods, such as ...

    2024-02-27
    See translation