English

The Linac Coherent Light Source II X-ray Laser in the United States has completed over a decade of upgrading and emitted the first X-ray with a record breaking brightness

156
2023-09-20 14:21:32
See translation

According to reports, the Linac Coherent Light Source II (LCLS-II) X-ray laser at the Stanford SLAC National Accelerator Laboratory in the United States has just completed an upgrade that took more than a decade. After a facelift, it has become the world's brightest X-ray facility and emitted the first record breaking X-ray, allowing researchers to record the behavior of atoms and molecules in biochemical reactions such as photosynthesis with unparalleled detail.

LCLS - II generates X-rays through a complex process. Firstly, researchers use ultraviolet lasers to separate electrons from copper plates, and then use strong microwave pulses to accelerate the electrons, which then pass through a "maze" of thousands of magnets. During this process, these electrons will oscillate back and forth and emit X-rays in a predictable and controllable manner. Researchers can image the internal structure of objects by guiding these X-ray pulses onto them.

The brightness of X-rays produced by LCLS - II is 1 trillion times that of X-rays used in the medical field, and 10000 times that of X-rays produced by its predecessor, LCLS.

Mike Dunn of SLAC explained that the brightness of X-rays has been improved in part because they have refurbished a 3-kilometer long metal tube, where electrons pass through the tube with a niobium lining. When cooled to around -271 ℃, niobium can withstand unprecedented high-energy electrons.

Nadia Zazeping from Le Chateau University in Australia pointed out that LCLS - II allows researchers to observe in unprecedented detail how biochemical processes occur at the atomic scale, making it possible to create "molecular movies" of biological processes such as mammalian visual imaging, photosynthesis, drug binding, and gene regulation.

Dunn also stated that LCLS - II can generate a large amount of bright X-rays in an extremely short period of time, allowing researchers to see what is happening inside the material, such as materials used in artificial photosynthetic devices or next-generation semiconductors, superconductors, etc. LCLS-II is a widely used research tool, just like a powerful microscope, which can observe all the details from quantum materials to biological systems, from catalytic chemistry to atomic physics.

Source: Science and Technology Daily

Related Recommendations
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    See translation
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    See translation
  • Lidar manufacturer RAYZ has completed a round A financing of nearly 100 million yuan

    Recently, RAYZ, a leading research and production company for high-performance LiDAR, announced the successful completion of the A-round financing. This round of financing was led by SMIC Juyuan, and well-known institutions such as Juntong Capital, Feitu Capital, Qiandao Investment, and Qiyu Chuangying also participated in this round of financing. The new round of financing will be used for the re...

    2023-10-20
    See translation
  • Lorenz competes in the LiDAR market with MEMS galvanometer technology

    At the recently concluded 2024 International Consumer Electronics Show (CES), automotive related technologies and solutions shone brightly, and a group of Chinese LiDAR suppliers competed on the same stage.The technologically advanced products, systematic solutions, continuously increasing delivery and market retention have to some extent proven that in the context of the development of automotive...

    2024-04-13
    See translation
  • Significant breakthrough in intelligent spectral environment perception research at Xi'an Institute of Optics and Fine Mechanics

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in the field of intelligent spectral environmental perception. Relevant research results have been published in the top journal in the field of environmental science, Environmental Science&Technology (Nature Index, 5-Year IF: 11.7), and have been selected as cover papers....

    03-20
    See translation