English

The First Operation of Two Color Mode in Infrared Free Electron Laser

127
2024-02-18 10:10:09
See translation

The Fritz Haber Institute of the Max Planck Institute in Berlin has achieved a technological milestone. The infrared free electron laser operates in dual color mode for the first time. This globally unique technology makes it possible to conduct experiments on synchronous dual color laser pulses, opening up new possibilities for research.

There are over a dozen free electron lasers worldwide, with significant differences in size, wavelength range, and cost. However, they all generate strong short radiation pulses. In the past few decades, free electron lasers have become an important radiation source and have been widely applied in basic research and applied science.

FHI researchers have now collaborated with American partners to develop a method that can simultaneously generate two different colored infrared pulses. This innovation is particularly important for studying the temporal processes of solids and molecules.

In FEL, the electron beam is first accelerated by an electron accelerator to a very high kinetic energy, reaching a speed close to the speed of light. Then, the fast electrons pass through a undulator, where they are forced into a path similar to a turbulent vortex by a strong magnetic field with periodic changes in polarity.

The oscillation of electrons leads to the emission of electromagnetic radiation, and its wavelength can be changed by adjusting the electron energy and/or magnetic field strength. For this reason, FEL can be used to generate laser like radiation in almost all parts of the electromagnetic spectrum, ranging from long terahertz to short X-ray wavelengths.

Since 2012, FEL has been operating at FHI, generating strong pulsed radiation in the mid infrared range, with wavelengths continuously adjustable in the range of 2.8 to 50 micrometers. In recent years, scientists and engineers at FHI have been dedicated to dual color expansion, installing a second FEL branch to generate far-infrared radiation with wavelengths between 5 and 170 microns.

The FIR-FEL branch includes a new hybrid magnet wave generator, which was specifically built at FHI. In addition, a 500 MHz kick chamber is installed behind the electron linear accelerator for lateral electron deflection. The kicking chamber can change the direction of high-energy electron beams at a speed of 1 billion times per second.

In June 2023, the FHI team demonstrated the first "laser" of the new FIR-FEL, guiding all electron beams from LINAC to FIR-FEL. In December 2023, they demonstrated the dual color operation for the first time. In this mode, the strong oscillating electric field formed in the kicking chamber causes every two electron beams to deflect to the left and every other electron beam to deflect to the right.

In this way, the high repetition rate electron beam from LINAC is divided into two beams, with each beam having half the repetition rate; One is guided to the old MIR-FEL, and the other is guided to the new FIR-FEL. In each FEL, changing the magnetic field intensity of the oscillator can continuously tune the wavelength up to four times.

For about a decade, FHI-FEL has enabled FHI's research team to conduct experiments on nonlinear solid-state spectroscopy and surface science from the spectra of clusters, nanoparticles, and biomolecules in the gas phase. To date, there have been approximately 100 peer-reviewed publications.

The new dual color mode is not available in any other IR FEL facility worldwide, and it will enable new experiments such as MIR/MIR and MIR/FIR pump probe experiments. This is expected to open up new opportunities for experimental research in different fields such as physical chemistry, materials science, catalytic research, and biomolecular research, thereby contributing to the development of new materials and drugs.

Source: Laser Net

Related Recommendations
  • Laser cleaning equipment manufacturer LPC receives multiple orders

    Recently, laser cleaning equipment manufacturer Laser Photonics Corporation (LPC) has disclosed multiple orders in a row.On December 26th, LPC received an order from Walsh Service Solutions to purchase a handheld laser cleaning equipment. It is understood that the manufacturer is purchasing CleanTech IR-3040, a high-performance handheld fiber laser cleaning device designed by LPC, mainly used for ...

    2024-12-31
    See translation
  • 2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics

    2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics.The company plans to showcase this technology at the large-scale technology trade show CES 2024 in Las Vegas next week.This company, headquartered in Cambridge, Massachusetts, stated that it has created the world's leading high-resolution fisheye sensor based on optical superlens technology. This technol...

    2024-01-05
    See translation
  • NUBURU will enter a new stage of diversified development

    Recently, NUBURU, a global developer of high-power and high brightness industrial blue light laser technology, announced the signing of a strategic commitment letter, officially launching a deep layout in the field of national defense and security. This transformation plan covers capital restructuring, technology mergers and acquisitions, and management team upgrades, marking a new stage of divers...

    02-26
    See translation
  • The research team has developed a mechanical luminescent touch screen that can work underwater

    The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.The team is composed of Pro...

    2024-03-08
    See translation
  • The Glory of Laser and the Odyssey of "Deep Technology"

    The British engineering and construction company Metz Group has a delegation in Spain to be responsible for the expansion and renovation of the central laser facility at Rutherford Appleton Laboratory near Oxford. More commonly, the construction of the powerful laser Vulcan 20-20 has just been obtained, with a delivery date of 2029.It will emit a main excitation beam that is billions of times larg...

    2023-12-09
    See translation