English

Dublin City University has successfully tested the laser components of the next generation space navigation atomic clock

114
2023-09-22 14:36:04
See translation

The team collaborated with Eblana Photonics and Enlightra to showcase for the first time a new caliber laser, which will enable atomic clocks to be more efficient and compact for future satellite missions.

This innovation addresses the key needs identified by the European Space Agency, which is the leading organization for the next generation of space navigation systems. This work was recently published in the Journal of Optics and Laser Technology.

Professor Liam Barry, the laboratory director, stated that
Without the help of smartphones, many of us find it difficult to navigate new cities or even our own. With the help of satellite navigation systems, these devices can help us find our way with high precision. The same technology supports various applications on our devices, including social media and dating applications.

These navigation systems, such as the Galileo system of the European Union and the global positioning system of the United States, rely on the ultra precise timing ability of microwave atomic clocks, and future optical atomic clocks will have an order of magnitude improvement compared to current microwave transition clocks.

With the rapid improvement of optical clock performance, only when operating in space can they be fully utilized, because on Earth, the clock frequency is influenced by the gravitational potential of the clock's location. Therefore, in the future, most applications that require the highest accuracy will need to operate optical clocks far enough from Earth.

The smaller the error in time measurement during navigation, the smaller the distance error obtained. For example, timing errors of nanoseconds or billionths of a second can be converted into distance and position errors of nearly 30 centimeters. Even the best mechanical and electronic clocks have a few seconds of error per day due to environmental conditions.

By tracking the frequency of electromagnetic radiation when electrons transition from one energy level to another, scientists can pinpoint the time to within a second of billions of years. Therefore, atomic clocks now set the length and time standards of seconds for the world. The current performance of optical clocks far exceeds that of the best microwave clocks, with relative error levels currently below 1 × 10-17. Therefore, it is expected that in the near future, time units will be redefined through optical transitions.

The new aperture laser has been successfully demonstrated for the first time at Dublin City University and will operate in an optical atomic clock using strontium atoms. These atoms are smaller than those used in other clocks and are excited by lasers into energy transitions during a process called optical pumping. The laser developed in this project is smaller than previous iterations and requires less power, which is crucial for the use on satellites.

Space applications impose some of the strictest requirements on atomic clocks used for timing, requiring excellent performance in harsh environments. Perhaps the most critical requirement is the low size, weight, and power (SWaP) requirements compatible with small satellites. The European Space Agency (ESA) is one of the leading forces driving the next generation of space atomic clock technology.

Jim Somers, CEO of Eblana, stated that Eblana Photonics is developing high-performance compact laser diodes with support from the European Space Agency (ESA) and is enthusiastic about adding them to the company's growing catalog of photonic diodes and devices. This innovation started with typical wavelengths in the telecommunications industry, and now exciting new homes have been found at lower wavelengths, which will provide fundamental improvements to the European Space Agency's atomic clock program, "said Richard Phelan, R&D Director of Eblana Photonics.

The Radio and Optical Communication Laboratory at the School of Electronic Engineering at Dublin City University has been dedicated to the development of groundbreaking laser technology for communication and sensing applications for 25 years.

Source: Laser Network

Related Recommendations
  • Farnell provides its own branded 3D printing consumables

    Farnell stated that it will store a series of 3D printed filaments under its Multicomp Pro brand, targeting "design engineers, creators, and hobbyists."."With the growing interest and demand for 3D printing, we are pleased to provide our customers with a diverse range of 3D printer consumables aimed at meeting the quality standards required by engineers," added Steve Jagger Marsh, the company's pr...

    2024-06-03
    See translation
  • In the development of modern electronic welding technology, the application advantages of laser soldering process

    With the rapid development of modern electronic information technology, integrated circuit chip packaging forms are also emerging in an endless stream, and the package density is getting higher and higher, which greatly promotes the development of electronic products to multi-function, high performance, high reliability and low cost.So far, through hole technology (THT) and surface mount technolog...

    2023-09-13
    See translation
  • New types of lenses in optics: Researchers develop hybrid achromatic lenses with high focusing efficiency

    Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices. These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses c...

    2023-12-11
    See translation
  • Fulu and Longview begin design work on laser melting devices

    Longview Fusion Energy Systems and Fluor have taken another step towards commercialization of laser fusion power plants.According to the memorandum of understanding signed by the two companies, Fulu will design the factory for Longview Fusion Energy Systems. The two companies collaborated and signed a memorandum of understanding in 2023 to leverage Fulu's experience in developing and constructing ...

    2024-03-13
    See translation
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    See translation