English

Particles have "fuzzy memory" in solid-state batteries

4
2024-02-18 14:59:02
See translation

When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.


The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.
This discovery has improved the understanding of solid-state batteries, which are candidates for the next generation of safer and more powerful batteries.
A paper describing this study was published in the journal Nature.


The team is studying the behavior of ions in solid-state battery electrolytes when a laser emits a sudden voltage through it.
Previously, researchers observed that ions in these electrolytes "jump" from one place to another in a chaotic manner, ultimately causing charges to flow.

But the team found that within one billionth of a second, the ions briefly changed direction and returned to their previous position - then continued their chaotic way.
The main author Andrei Poletayev is a postdoctoral researcher at the University of Oxford, who refers to it as "fuzzy memory.".

"Researchers have been using macroscopic tools to study ion transport for a long time, and they cannot observe what we see in this study," Poletayev said.
Researchers use high-frequency lasers with pulses of only a few trillions of seconds to observe the movement of ions - the light reflected from the electrolyte can tell them what the ions are doing.

"Many strange and unusual things happen during ion hopping," said senior author Aaron Lindenberg, a professor at Stanford University and the SLAC National Accelerator Laboratory in the United States, where experiments were conducted.
When we apply the force of vibrating the electrolyte, ions do not react immediately like most materials.
Ions may sit there for a while, suddenly jump up, and then sit there for a long time. You may need to wait for a while before suddenly experiencing a huge displacement.
Therefore, there are randomness factors in this process, which makes these experiments difficult.

Source: Laser Net

Related Recommendations
  • Transforming solid-state single photon sources using multifunctional metalenses

    Quantum photonics is one of the important research directions in the quantum field, which utilizes the unique properties of light at the quantum level. The core of this field is the deterministic single photon source, which sequentially emits individual photons through spontaneous emission and is the cornerstone of quantum communication, computing, and secure encryption. However, under environment...

    02-26
    See translation
  • BLM Group launches a new LT12 laser tube cutting system

    Recently, BLM Group in the United States has launched a new LT12 laser tube system, which performs well in cutting light and heavy pipes and profiles, and can handle materials with a diameter of up to 305 millimeters.According to the company, compared to other similar machines, the LT12 laser tube system reduces cutting time by up to 55% when cutting materials with the same maximum diameter, signi...

    04-18
    See translation
  • Acousto optic modulation of gigawatt level laser pulses in the ambient air of Nature Photonics

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam. The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale la...

    2023-10-12
    See translation
  • Zhejiang University has prepared ultra strong and tough 3D printing elastic materials

    Professor Xie Tao and researcher Wu Jingjun from the School of Chemical Engineering and Biotechnology at Zhejiang University have designed a new type of photosensitive resin and used it to create a "super rubber band" that can stretch to over 9 times its own length and lift 10 kilograms of objects with a "body" with a diameter of 1 millimeter through 3D printing. The relevant results were recently...

    07-06
    See translation
  • Scientists develop flat-topped laser beams to overcome Gaussian distribution limitations

    The beam emitted by almost all laser systems follows the Angle pattern of Gaussian distribution. The Gaussian irradiance distribution means that irradiance has a smooth peak at the center point and slowly declines toward the edge. In theory, the irradiance level of a Gaussian distribution can never reach zero, which means that the distribution can expand indefinitely. This phenomenon in the laser ...

    2023-08-04
    See translation