English

Shanghai University of Technology publishes the latest Nature paper

111
2024-02-26 14:40:39
See translation

With the increasing demand for human data, the requirements for data storage methods are also increasing. Optical Data Storage (ODS) is a light based storage method commonly used in DVDs, which is low-cost and very durable. But ODS usually stores data in a single layer, and the amount of data that can be stored is limited. Gu Min, academician of Shanghai University of Technology, Wen Jing, and Ruan Hao, researcher of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, published a research paper entitled A 3D nanoscale optical disk memory with petabit capacity on the international top academic journal Nature. This paper describes a new method of storing more data in optical discs, which uses three-dimensional rather than two-dimensional methods to store data, with data storage capacity reaching an astonishing petabit level, or 1000 trillion bits (1015 bits).

In this study, Wen Jing, Ruan Hao, Gu Min, and others developed a new method that uses a three-dimensional optical data storage (ODS) structure to store data in hundreds of layers, rather than just one layer. This method utilizes a new storage medium called AIE-DDPR, which is made by doping aggregation induced luminescent dyes in photoresist films. This enables the thin film to be read and written at the nanoscale. This thin film is composed of molecules that absorb photons (photo initiators) and highly photosensitive molecules to obtain written data.

The research team used a 54 nanometer laser recording point size to store data. The disk medium had 100 layers of data, with a spacing of 1 micrometer between each layer, which greatly increased the surface density of the ODS film. The research team also found that information stored in deeper layers of the film has a quality comparable to data stored in shallower layers near the surface.

The principle and production process of nanoscale optical writing and reading for blank AIE-DDPR optical discs
The research team pointed out that the workflow for producing AIE-DDPR discs is compatible with existing methods for producing DVDs, indicating the possibility and economic feasibility of producing these films on a large scale. The paper also pointed out some limitations of this technology, including the writing speed and energy consumption of the process.

Source: Sohu

Related Recommendations
  • Aston University is the first to adopt innovative laser detection technology using MEMS mirrors

    The School of Engineering and Physical Sciences at Aston University, located in Birmingham, UK, is at the forefront of exploring innovative laser detection methods and turbulence simulation. The plan revolves around the utilization of micro electromechanical mirrors, which have had a significant impact on various scientific fields over the past two decades.MEMS reflectors have gained widespread re...

    2024-03-07
    See translation
  • Progress in the Research of Continuous Wave Laser in Chemical Industry

    Laser plays an important role in fields such as photonic chips, laser displays, and in vehicle radars. Organic materials have advantages such as molecular diversity, energy level richness, heterogeneous compatibility, and ease of processing. They have significant advantages in the construction of high-performance and multifunctional lasers and are expected to further innovate laser technology and ...

    2023-08-31
    See translation
  • The Role of Active Tunable Laser in GeSn Nanomechanical Oscillator in Nat Nanotechnology

    It is reported that researchers from Nanyang Technological University in Singapore, Federal Institute of Technology Lausanne in Switzerland, Physics Laboratory of Higher Normal University in Paris, National Center for Scientific Research in France, Sorbonne University, City University of Paris, University of Leeds in the UK, and Korean Academy of Science and Technology (KAIST) have reported on the...

    2024-05-14
    See translation
  • Ruisheng Clyde Aerospace Company Commercializes TNO's Satellite Communication Laser Terminal

    AAC Clyde Space, a small satellite technology multinational company headquartered in Uppsala, Sweden, has obtained the right to manufacture and distribute laser satellite communication terminals using the optical technology of the Dutch research institution TNO.TNO's technology helps to transmit satellite generated data to Earth through lasers, with the potential to achieve high speed and security...

    2024-05-24
    See translation
  • Unsupervised physical neural network empowers stacked imaging denoising algorithm

    In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engin...

    03-25
    See translation