English

The Innovation Road of Laser Welding Automation Production Line for New Energy Vehicle Motor stators

1136
2024-02-28 14:48:46
See translation

With the increasing global attention to environmental protection and sustainability, new energy vehicles have become an important trend in the automotive industry. In this context, the production method of the core component of new energy vehicles - the motor stator - has also undergone profound changes. Welding, as a key manufacturing process, has brought disruptive innovation to the manufacturing of motor stators in recent years with the application of laser welding technology and the promotion of automated production lines.

Laser welding technology: the cornerstone of fine and stable production
Laser welding technology has become a powerful assistant in motor stator manufacturing due to its high energy density and precise welding characteristics. The high energy density of this technology makes the welding process more precise and stable, achieving smaller welds and thus improving welding strength. Meanwhile, laser welding can also avoid the heat affected zone generated in traditional welding, effectively ensuring the overall performance of the motor stator. This high-precision welding technology provides a solid foundation for the stable operation of the motor.

Automated assembly line: a powerful tool for efficient production
The application of automated assembly lines makes the production of motor stators more efficient. Through robots and advanced control systems, automated production lines have achieved automated operations in various production processes, significantly improving production efficiency. In the automated production line for laser welding of new energy vehicle motor stator, the assembly of stator, positioning of welding points, and adjustment of welding parameters have all been intelligently processed, reducing the possibility of manual intervention and improving the stability and consistency of the production line.

Reducing production costs: Economic benefits of automated production lines
The introduction of automated production lines has greatly reduced production costs. By reducing manual operations and improving production efficiency, manufacturing enterprises can better cope with market competition pressure. At the same time, automated production lines reduce scrap rates, improve product qualification rates, and further enhance the economic benefits of enterprises.

Source: Laser Net

Related Recommendations
  • Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

    German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.Researcher Alexandro...

    2024-03-13
    See translation
  • Netherlands Integrated Photonics Ecological Platform Raises € 60 million to Support European Photonics Startups

    PhotonVentures, based in Eindhoven, the Netherlands, has announced the launch of a venture capital fund designed to help early-stage photonic chip startups and scale-up businesses.In the first round of funding, PhotonDelta, a Dutch photonic integrated circuit (PIC) pioneer, raised €60 million as the lead investor and numerous private investors. PhotonVentures said it plans to raise a total of...

    2023-09-02
    See translation
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    See translation
  • More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

    μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.It is understood that ...

    2023-11-01
    See translation
  • Artificial intelligence accelerates the process design of 3D printing of metal alloys

    In order to successfully 3D print metal parts to meet the strict specifications required by many industries, it is necessary to optimize process parameters, including printing speed, laser power, and layer thickness of deposited materials.However, in order to develop additive manufacturing process diagrams that ensure these optimal results, researchers have to rely on traditional methods, such as ...

    2024-02-27
    See translation