English

TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

1233
2024-03-01 11:43:22
See translation

In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be able to use these systems to monitor the charging and discharging of batteries in real-time, or to accurately determine impurities in the batteries.

The research results will be incorporated into the development of new batteries. According to the analysis, manufacturers will be able to improve charging speed, etc. So far, the company can only conduct such research on large particle accelerators over 100 meters long. The research stations of these large research institutions are rare. The laser driven X-ray source is only the size of a moving house, so the manufacturing cost is lower. Therefore, they are very suitable for use in industry.

The high-tech company Tongkuai is contributing its expertise in industrial laser manufacturing to this partnership. BASF and Cellforce are providing battery materials and components for testing. Ushio Germany and Excessum are contributing their expertise in the field of beam sources. Brooke and Viscom are responsible for building the system. In terms of academia, the University of Hanover and the Fraunhofer Institute in Aachen and Jena are driving forces. The research budget is approximately 15 million euros, and the Federal Ministry of Education and Research is providing funding for the project.

The XProLas development project also aims to create a compact, high brightness X-ray source for analyzing the positive electrode materials of electric vehicle batteries. The materials used to manufacture the cathode of electric vehicle batteries are crucial for the performance and reliability of electric vehicle batteries. The exact composition of cathode materials can only be determined using X-rays. Compact laser drive models can also replace large research facilities in this application field. Therefore, positive electrode material manufacturers can accelerate their development work.

Laser acts as an upstream beam source when producing X-rays. The so-called targets in laser pulse shock are metals such as gallium, indium, or tin. Generating plasma; This type of plasma emits some energy in the form of extremely short wave light, such as X-rays.

Source: Laser Net

Related Recommendations
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    See translation
  • The Indian medical laser market has entered a rapid growth mode

    According to industry forecasts, the medical laser market in India, especially in the field of medical aesthetics, is expected to be worth up to 71572 million rupees in fiscal year 2023. It is expected that this number will increase to 1.8358 billion rupees by fiscal year 2031, with a compound annual growth rate of 12.49%.Alma Medical, a global innovator in the field of medical lasers in Israel, h...

    2024-07-05
    See translation
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    See translation
  • The market size of quantum cascade lasers is expected to reach 617.93 million US dollars by 2032

    The quantum cascade laser (QCL) market is maintaining stable growth globally. This trend is mainly due to the continuous advancement of technology, the expanding scope of industrial applications, and the increasing demand in multiple fields such as national defense, healthcare, and scientific research. In 2023, the market size has reached $416.85 million and is expected to grow to $617.93 million ...

    11-27
    See translation
  • TRUMPF helps upgrade the automation of 3D laser processing for automotive thermoforming

    (Dechengen, Germany, March 24, 2025) - TRUMPF Group in Germany has now provided end customers with a fully automated one-stop solution for laser processing systems. With this solution, customers can not only shorten the production cycle, but also effectively reduce the cost of 3D laser material processing. Our laser equipment has excellent production efficiency. Now, through the automation upgrade...

    04-02
    See translation