English

TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

1184
2024-03-01 11:43:22
See translation

In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be able to use these systems to monitor the charging and discharging of batteries in real-time, or to accurately determine impurities in the batteries.

The research results will be incorporated into the development of new batteries. According to the analysis, manufacturers will be able to improve charging speed, etc. So far, the company can only conduct such research on large particle accelerators over 100 meters long. The research stations of these large research institutions are rare. The laser driven X-ray source is only the size of a moving house, so the manufacturing cost is lower. Therefore, they are very suitable for use in industry.

The high-tech company Tongkuai is contributing its expertise in industrial laser manufacturing to this partnership. BASF and Cellforce are providing battery materials and components for testing. Ushio Germany and Excessum are contributing their expertise in the field of beam sources. Brooke and Viscom are responsible for building the system. In terms of academia, the University of Hanover and the Fraunhofer Institute in Aachen and Jena are driving forces. The research budget is approximately 15 million euros, and the Federal Ministry of Education and Research is providing funding for the project.

The XProLas development project also aims to create a compact, high brightness X-ray source for analyzing the positive electrode materials of electric vehicle batteries. The materials used to manufacture the cathode of electric vehicle batteries are crucial for the performance and reliability of electric vehicle batteries. The exact composition of cathode materials can only be determined using X-rays. Compact laser drive models can also replace large research facilities in this application field. Therefore, positive electrode material manufacturers can accelerate their development work.

Laser acts as an upstream beam source when producing X-rays. The so-called targets in laser pulse shock are metals such as gallium, indium, or tin. Generating plasma; This type of plasma emits some energy in the form of extremely short wave light, such as X-rays.

Source: Laser Net

Related Recommendations
  • Using laser controlled filaments in vanadium dioxide to enhance neural morphology calculations

    In a new "Progress in Science" study, scientists from the University of Science and Technology of China have developed a dynamic network structure for neural morphology calculations using laser controlled conductive wires.Neuromorphic computing is an emerging research field that draws inspiration from the human brain to create efficient and intelligent computer systems. The core of neuromorphic co...

    2023-10-13
    See translation
  • Huagong Technology: Exploring the "Laser+" Strategy to Deliver the Powerful Productivity of Laser and Intelligent Manufacturing to Various Parts of the World

    What is the power of a beam of light? If light is used in the manufacturing field, its highest accuracy can reach one percent of the diameter of a hair thread, which is why it is called the "brightest light", "most accurate ruler", and "fastest knife". From airplanes and ships to kitchens and electrical appliances, lasers are widely used as advanced processing tools in all aspects of equipment man...

    2023-10-12
    See translation
  • Q.ANT Secures $18 Million in Refinancing for Photonic AI

    Q.ANT, a developer of artificial intelligence and high-performance computing (HPC) photonic processing systems, announced the completion of the second round of its Series A financing, reportedly valued at $18 million. The investment was led by Duquesne Family Office LLC, the investment firm of Stanley F. Druckenmiller. The increase brings Q.ANT’s total funding to US$80 M – claimed to be the larges...

    10-31
    See translation
  • UK to Build World's Largest Power Laser: Accelerating the Use of Nuclear Fusion and Promising to Obtain Clean Energy

    According to reports, British scientists will build the world's largest power laser. They hope that this £ 85 million (approximately $103 million) device can accelerate the use of nuclear fusion and potentially obtain clean energy, which is inexhaustible.According to the report, the "Vulcan" 20-20 laser will be built in Havel, Oxfordshire, and it will produce a laser brightness that is 24 t...

    2023-10-09
    See translation
  • NICT Japan corrects sudden data errors caused by atmospheric turbulence in laser links

    The National Institute of Information and Communication Technology of Japan, Nagoya Institute of Technology, and Japan Aerospace Exploration Agency have achieved the so-called "world's first successful demonstration of next-generation error correction codes, reducing the impact of atmospheric turbulence on ground to satellite laser communication".Atmospheric turbulence in ground-to-satellite laser...

    10-25
    See translation