English

Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

64
2024-03-02 11:13:23
See translation

Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navigation, and large bandwidth data processing.

In a new paper published in Nature Photonics, researchers reported improvements in the stable generation of multi wavelength signals using micro integrated comb laser systems. This study is a collaboration between the German Center for Electronic Synchrotron Radiation (DESY Hamburg) and a Swiss startup called Enlightra, which focuses on developing efficient multi wavelength lasers for high-capacity data transmission and optical computing. The author states that light sources are a key technology that drives optical communication to reach the data rate required by artificial intelligence.

This paper titled "Synthetic reflection self injection locked microcombs" showcases a special design. By introducing a customized nanostructure into the ring resonator in a micro comb system, the integrated comb laser can emit laser radiation in a stable and efficient manner. This novel design can improve the performance of comb lasers, enabling them to play a better role in fields such as optical communication and optical computing.

This study demonstrates a microcavity resonator with programmable synthetic reflection, providing customized injection feedback for driving lasers. This synthetic reflection enables them to achieve stable and definite working states of self injection locking micro combs. This is in stark contrast to the traditional self injection locking based on random defect scattering.

Dr. John Jost, one of the authors, said, "This is stability achieved through design. In addition to stability, we have also increased conversion efficiency by more than 15 times."

As part of the research, the author conducted various tests using different nanostructured ring resonators and docked semiconductor laser diodes with photonic chips. The resonator is designed using a photonic crystal micro ring structure based on a silicon nitride platform and prepared through ultraviolet lithography technology. The study was only demonstrated in the C-band, but the researchers stated that it performed equally well in all communication bands.

The comb laser proposed by this research institute can be widely produced and integrated with other photonic integrated circuits. Therefore, it can support fast optical input/output units or optical programmable gate arrays, which is of great significance for data intensive applications such as generative artificial intelligence and novel non integrated computer and memory architectures.

According to researchers, this is the first time that back reflection technology has been used to achieve stable and efficient generation of laser combs. With this stable, efficient, and easy to manufacture new design, laser micro combs are expected to make rapid progress in applications such as portable sensors, autonomous navigation, or extremely wide bandwidth data processing.

Source: Sohu

Related Recommendations
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the generation of third harmonic in laser air filamentation

    Recently, the team from the State Key Laboratory of Intense Field Laser Physics, Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences found that the third-order harmonics induced by air filamentation of high repetition rate femtosecond lasers have significant self jitter. To solve this bottleneck problem, a solution based on an external DC electric field was proposed, which sign...

    2024-10-10
    See translation
  • Alcon acquires ophthalmic laser equipment company for $466 million

    On July 3rd local time, Swiss ophthalmic care giant Alcon announced the acquisition of Israeli medical technology company Belkin Vision and its laser equipment assets for treating glaucoma.The transaction includes a prepayment of $81 million, of which approximately $65 million is in cash. In addition, if Alcon can establish this technology as the preferred first-line treatment option for clinical ...

    2024-07-09
    See translation
  • Brother Australia launches innovative professional monochrome laser series

    Brother Australia is a renowned printing manufacturer that has expanded its product portfolio by launching its latest innovative commercial machine series, the professional monochrome laser machine series. These extraordinary devices are designed to extend the lifespan of commercial printing cycles and improve productivity. Due to their sturdy components and durable consumables, these extraordinar...

    2024-03-21
    See translation
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    See translation
  • Aspen Laser launches patented four wavelength Ascent laser series in the medical equipment industry

    Recently, Aspen Laser, an emerging global leader in the medical equipment industry, announced that after several months of trial operation, it has officially launched the Ascent laser series and is ready for shipment. It is reported that this new therapeutic laser series, with its outstanding 32 watt combined power and unique patented four wave laser technology in the industry, once again demons...

    2024-08-12
    See translation