English

Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

903
2024-03-02 11:13:23
See translation

Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navigation, and large bandwidth data processing.

In a new paper published in Nature Photonics, researchers reported improvements in the stable generation of multi wavelength signals using micro integrated comb laser systems. This study is a collaboration between the German Center for Electronic Synchrotron Radiation (DESY Hamburg) and a Swiss startup called Enlightra, which focuses on developing efficient multi wavelength lasers for high-capacity data transmission and optical computing. The author states that light sources are a key technology that drives optical communication to reach the data rate required by artificial intelligence.

This paper titled "Synthetic reflection self injection locked microcombs" showcases a special design. By introducing a customized nanostructure into the ring resonator in a micro comb system, the integrated comb laser can emit laser radiation in a stable and efficient manner. This novel design can improve the performance of comb lasers, enabling them to play a better role in fields such as optical communication and optical computing.

This study demonstrates a microcavity resonator with programmable synthetic reflection, providing customized injection feedback for driving lasers. This synthetic reflection enables them to achieve stable and definite working states of self injection locking micro combs. This is in stark contrast to the traditional self injection locking based on random defect scattering.

Dr. John Jost, one of the authors, said, "This is stability achieved through design. In addition to stability, we have also increased conversion efficiency by more than 15 times."

As part of the research, the author conducted various tests using different nanostructured ring resonators and docked semiconductor laser diodes with photonic chips. The resonator is designed using a photonic crystal micro ring structure based on a silicon nitride platform and prepared through ultraviolet lithography technology. The study was only demonstrated in the C-band, but the researchers stated that it performed equally well in all communication bands.

The comb laser proposed by this research institute can be widely produced and integrated with other photonic integrated circuits. Therefore, it can support fast optical input/output units or optical programmable gate arrays, which is of great significance for data intensive applications such as generative artificial intelligence and novel non integrated computer and memory architectures.

According to researchers, this is the first time that back reflection technology has been used to achieve stable and efficient generation of laser combs. With this stable, efficient, and easy to manufacture new design, laser micro combs are expected to make rapid progress in applications such as portable sensors, autonomous navigation, or extremely wide bandwidth data processing.

Source: Sohu

Related Recommendations
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    See translation
  • Progress made in the research and development of high-performance electrically pumped topology lasers by the Institute of Semiconductors, Chinese Academy of Sciences

    Topological laser (TL) is a laser device designed and manufactured using the principles of topological optics, which can produce a robust single-mode laser and is an ideal light source for future new optoelectronic integrated chips. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection a...

    2024-06-06
    See translation
  • Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical combs to become a high-performance laser

    Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical microcombiners, making them a high-performance laser. This breakthrough will have a wide impact in fields such as space science and healthcare.The two rings in the figure are micro resonators, which play a crucial role in the implementation of efficient micro combs.The importance of micr...

    2023-09-27
    See translation
  • Germany's Tongkuai Laser Austria's Parsing Intelligent Factory Completed Expansion

    This month, German laser giant Trumpf completed an expansion project at its smart factory in Pasing, Austria. The opening ceremony was held in the presence of members of the Tongkuai Group family and representatives from the business and political circles. Over the past two years, Tongkuai has invested approximately 40 million euros in the expansion of the factory. The company has built two new...

    2024-09-14
    See translation
  • SEMA 2023: Huali's Easy Level Floating Free Laser Fuel Level Transmitter

    Winning the SEMA Best Engineering New Product Award is not an easy task. Therefore, it said a lot about Huali's new non floating fuel transmitter bringing hardware home. The Easy Level fuel level sender is a brand new design that does not rely on traditional float arm settings, but uses a frikken laser beam to measure the fuel level in the tank.More precisely, Easy Level uses LiDAR technology to m...

    2023-11-03
    See translation