English

An optical display technology based on mechanical optical mechanism

57
2024-03-12 13:52:13
See translation

The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.

Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP that can write and erase messages underwater. This discovery reveals a unique optical phenomenon in ALP, and they have also created a device to achieve this phenomenon.

ALP can absorb energy and gradually release it, exhibiting mechanical luminescence when subjected to external physical pressure and mechanical quenching, where the emitted light gradually disappears.

In this study, scientists delved into the effects of captured electrons and charging on mechanical luminescence and quenching.
They identified the potential mechanisms behind these two events. Based on this knowledge, they paired ALP with an extremely thin polymer material that can simultaneously achieve both phenomena. This combination has led to the development of optical display patches that can be attached to the skin.

Just press with your finger and the display screen patch can write information. When exposed to ultraviolet radiation, the patch will reset to a blank state, just like using an eraser to delete text from a notebook. In addition, touch screen displays also have moisture resistance, allowing them to continue working even after prolonged immersion in water.

Professor Sei Kwang Hahn, who led the research, said, "It can serve as a communication tool in situations where communication options are limited, such as underwater environments characterized by low light or high humidity. It will also be used in wearable photon biosensors and phototherapy systems in extreme environments.".

Source: Laser Net

Related Recommendations
  • Aalyria plans to establish a laser link mesh network to quickly transmit data on land, in the air, in the ocean, and in space

    Aalyria is establishing a laser link mesh network to quickly transmit data on land, in the air, in the ocean, and in space. The maritime part of the plan is about to be pushed forward.Recently, this DC based laser communication network company announced the signing of a memorandum of understanding with HICO Investment Group, which focuses on investing in shipping and logistics companies. According...

    2023-10-26
    See translation
  • Laser technology helps wafer bonding, creating a cutting-edge laser system production factory

    Recently, Coherent LaserSystems, the global leader in laser and photon solutions, and Fraunhofer IZM-ASSID jointly announced that they have reached a strategic partnership to develop and optimize alternative bonding and debonding technologies for advanced CMOS and heterogeneous integrated applications (including quantum computing), in which laser technology plays a crucial role. It is reported t...

    2024-06-19
    See translation
  • Researchers use blurry light to 3D print high-quality optical components

    Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D p...

    2024-05-11
    See translation
  • Progress made in the research and development of high-performance electrically pumped topology lasers by the Institute of Semiconductors, Chinese Academy of Sciences

    Topological laser (TL) is a laser device designed and manufactured using the principles of topological optics, which can produce a robust single-mode laser and is an ideal light source for future new optoelectronic integrated chips. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection a...

    2024-06-06
    See translation
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    See translation