English

An optical display technology based on mechanical optical mechanism

74
2024-03-12 13:52:13
See translation

The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.

Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP that can write and erase messages underwater. This discovery reveals a unique optical phenomenon in ALP, and they have also created a device to achieve this phenomenon.

ALP can absorb energy and gradually release it, exhibiting mechanical luminescence when subjected to external physical pressure and mechanical quenching, where the emitted light gradually disappears.

In this study, scientists delved into the effects of captured electrons and charging on mechanical luminescence and quenching.
They identified the potential mechanisms behind these two events. Based on this knowledge, they paired ALP with an extremely thin polymer material that can simultaneously achieve both phenomena. This combination has led to the development of optical display patches that can be attached to the skin.

Just press with your finger and the display screen patch can write information. When exposed to ultraviolet radiation, the patch will reset to a blank state, just like using an eraser to delete text from a notebook. In addition, touch screen displays also have moisture resistance, allowing them to continue working even after prolonged immersion in water.

Professor Sei Kwang Hahn, who led the research, said, "It can serve as a communication tool in situations where communication options are limited, such as underwater environments characterized by low light or high humidity. It will also be used in wearable photon biosensors and phototherapy systems in extreme environments.".

Source: Laser Net

Related Recommendations
  • Set a new world record! Optical crystals as thin as cicada wings increase energy efficiency by over a hundred times

    On quartz sheets, the angular rhombic boron nitride crystals with a thickness of only 1 to 3 microns are as thin as cicada wings, but their energy efficiency is 100 to 10000 times higher than traditional optical crystals. At the opening ceremony of the 2024 Zhongguancun Forum Annual Conference held on April 25th, the world's thinnest known optical crystal was listed as one of the top ten technolog...

    2024-04-26
    See translation
  • Artificial intelligence accelerates the process design of 3D printing of metal alloys

    In order to successfully 3D print metal parts to meet the strict specifications required by many industries, it is necessary to optimize process parameters, including printing speed, laser power, and layer thickness of deposited materials.However, in order to develop additive manufacturing process diagrams that ensure these optimal results, researchers have to rely on traditional methods, such as ...

    2024-02-27
    See translation
  • The Key Role of Laser Pointing Stability in the Application of Lithography Systems

    Lithography is one of the core processes in semiconductor manufacturing, and extreme ultraviolet lithography technology, as a new generation lithography technology, is also in a rapid development stage. The basic principle is to use photoresist (also known as photoresist) to form corrosion resistance due to photochemical reactions after being photosensitive, and to engrave the patterns on the mask...

    2024-07-02
    See translation
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    See translation
  • 3D printed chocolate: a delicious fusion of innovation and sustainable development

    In the era of sustainable development and cutting-edge technology, the integration of 3D printing and culinary art is not only an innovation, but also a proof of human creativity. Imagine in such a world, your desserts are not just coming out of the kitchen, but carefully designed and printed layer by layer. This is not a glimpse of the distant future, but the reality of today, as developers have ...

    2024-02-19
    See translation