English

Innovative laser technology: a novel quantum cavity model for superradiance emission

73
2024-03-16 10:00:57
See translation

Quantum optics is a complex field where theoretical and experimental physicists collaborate to achieve breakthroughs in explaining subatomic level phenomena.

Recently, Farokh Mivehvar from the University of Innsbruck used the most comprehensive model in quantum optics, the Dicke model, to study the interaction between two groups of atoms in a quantized field. This new study makes it possible to observe superradiance states and paves the way for high-performance superradiance lasers.

In 1954, Dick first proposed the concept of superradiance, which describes the collective emission of light by a large group of atoms. Dick's model involves a system consisting of N two-level atoms, all of which are initially in excited states. When an atom spontaneously emits photons, it triggers a cascade effect, causing all N atoms to decay and emit photons simultaneously.

Dicke proposed that by limiting these atoms to a small portion of the wavelength, the emitted photons will be the same, leading to constructive interference and generating an electromagnetic field with amplitude proportional to N and energy density proportional to N2. This behavior is in stark contrast to the independent decay of N isolated atoms, where light emission is incoherent and energy density is linearly proportional to N.
In 1973, Hepp and Lieb discovered a unique steady-state superradiance form, in which a group of atoms interact with the quantized mode of the cavity. They studied the thermal equilibrium characteristics of this interaction and used the Dicke model as a framework.

They revealed a continuous phase transition between two states: normal state and superradiance state. In the normal phase, the number of photons does not increase with the number of atoms, while in the superradiative phase, n is proportional to N.
Quantum materials are complex quantum multibody systems composed of multiple atomic species. Their low-energy behavior typically involves complex interactions of multiple degrees of freedom, such as charge, spin, orbit, and lattice.

When exploring modifications to the emergent properties of quantum materials, an alternative approach has emerged, which is to replace classical laser fields with quantum mechanical photon modes confined within the cavity
In traditional cavity quantum electrodynamics, the focus is on the interaction between one or more emitters and the clear field modes of the cavity. When a single dipole transition of the emitter is strongly coupled with the cavity, this interaction becomes particularly noteworthy, characterized by frequency ω。 This situation can be effectively described using a simple two-level model, where the interaction between light and matter is quantified by a single coupling strength g.

The field of cavity quantum materials is still in its early stages, attracting researchers from different communities, including quantum materials science and quantum multibody physics. Cavity quantum materials are expected to serve as photon platforms and can be integrated into photon based quantum technologies.

The inherent strong electronic interactions in quantum materials can promote efficient photon interactions in two-photon quantum gates and generate non classical optical states.

The Dicke model has effectively utilized cavity assisted two-photon Raman transitions, where both boson and fermion atoms are in low atomic momentum or hyperfine states. Researchers are also enthusiastic about implementing Dicke type models and exploring superradiance in waveguide QED configurations and cavity quantum materials.

The attenuation rate of a single transmitter is influenced by its surrounding radiation environment, which is a key concept of cavity QED. By using high reflective mirrors to restrict individual optical modes, the cavity QED creates a local reservoir for the transmitter, thereby enhancing its attenuation in the cavity.

In the context of "waveguide QED", atoms are connected to the optical modes of propagation, and the concept of one-dimensional bath becomes relevant.

The environment also shapes a collective decay of excited emitters. Dick superradiance is an example of this phenomenon: a completely inverted set of emitters synchronizes their decay, resulting in the emission of a brief and intense photon pulse.

Inspired by the latest developments in quantum gas cavity QED, theoretical physicist Farokh Mivehvar from the University of Innsbruck introduced a new variant of the Dicke model. This method is called the "non-standard Dick model", which involves coupling two independent spin 1/2 atomic ensembles to a single cavity mode, each with different coupling strengths.

Then, the research focuses on specific scenarios with opposite coupling strengths, equivalent to having equal coupling strengths under unitary transformations. This configuration leads to various interesting phenomena, mainly attributed to the conservation of total spin in each set.

The semi classical method reveals the existence of multiple steady-state phases, especially the bistable superradiance state. In this bistable region, there is a ± xFo-SR state, where the total spins of two atomic ensembles are arranged in the same x-direction, whether positive or negative. Observing other superradiance phases, characterized by the total spin of two ensembles pointing in opposite x-directions.

Mivehvar also determined the initial states in the system's multiple steady states, and the subsequent non-equilibrium dynamics diverged from these states to any steady state. The system does not evolve towards a constant state, but transitions to a non-stationary state characterized by vibration paths. This phenomenon is related to the existence of competitive fixed points. The complete quantum mechanical calculations also verified the coexistence of ± xFo SR and ± xFi SR states.

When two coupling strengths λ Time 1 and λ 2. The difference is that the Hamiltonian is no longer simply mapped to the standard Dicke model. Therefore, the system exhibits a wider range of steady-state and non-stationary phenomena. This is due to the conservation of total spin in each ensemble, which promotes physical exploration beyond the range of symmetric Dirk subspaces.

In general, where λ 1 is not equal to ± λ 2. With the interaction of different symmetric sectors, the dynamics of the system become more complex and diverse. This complexity may lead to different critical behaviors and the emergence of multiple critical points within the system.

Understanding these multi critical points is crucial for advancing our understanding of complex superradiative emission phenomena in quantum cavity models. The proposed model can be easily implemented in state-of-the-art experiments, providing a new approach for studying various non-equilibrium magnetic ordering and dynamic phenomena in cavity QED experimental devices.

Source: Laser Net


Related Recommendations
  • 10.30 Shenzhen Munich South China Laser Exhibition awaits you

    The Munich South China Laser Exhibition is about to open!As a member exhibition of the South China International Intelligent Manufacturing, Advanced Electronics, and Laser Technology Expo (referred to as "LEAP Expo"), it will be held from October 30 to November 1, 2023 at the Shenzhen International Convention and Exhibition Center (Bao'an New Hall) in conjunction with the Munich South China Elect...

    2023-10-26
    See translation
  • Stable lasers developed with mixed materials focus on autonomous vehicle, etc

    Researchers printed microscale lenses directly onto optical fibers, allowing them to tightly combine the fibers and laser crystals into a single laser oscillator.Scientists have used 3D printing polymers in new micro optical technology, which can reduce the size of lasers and be used in various new applications, including the laser radar system for autonomous vehicle technology and cancer treatmen...

    2024-01-22
    See translation
  • Coherent lasers will help expand the scale of fusion tokamaks

    Coherent company's excimer lasers can be more widely used in fusion reactor applications, after the US based photonics giant signed a "letter of intent" with Japan's Faraday 1867 Holdings.Faraday 1867, headquartered in Kanagawa Prefecture, is said to have become the world's leading manufacturer of high-temperature superconducting (HTS) tape through its subsidiary Faraday Japan factory.This tape is...

    2023-10-11
    See translation
  • FABULOUS provides certified food safety 3D printing materials to the United States

    As is well known, 3D printing is becoming increasingly popular and expanding its application areas to different fields. Additive manufacturing has been established in the aerospace, automotive, and medical industries and is now being used in the production of consumer goods and luxury goods, construction, and food industries. On the one hand, this mainly involves innovative edible products from 3D...

    2024-05-27
    See translation
  • Acousto optic modulation of gigawatt level laser pulses in the ambient air of Nature Photonics

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam. The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale la...

    2023-10-12
    See translation